Skip to main content

Wissenschaftlicher und technischer Stand zu Beginn des Vorhabens

  • Chapter
  • First Online:
Thermoplastische, rollgeformte Profile in Hybridbauweise 2 - TroPHy2

Zusammenfassung

Kap. 2 präsentiert den Stand der Technik zu hybriden Werkstoffen. Nach einer kurzen Einführung (Abschn. 2.1.1) zu allgemeinen Anwendungen von Hybridlaminaten stellen die teilnehmenden Partner ihre projektrelevanten laufenden oder bereits abgeschlossenen Forschungsarbeiten vor (Abschn. 2.1.2). Grundlegende Aspekte, die das Projekt TroPHy2 im Folgenden berücksichtigt, sind die Fügetechnik (Abschn. 2.1.3), die Anbindung zwischen Faserkunststoffverbunden (FKV) und Metallen (Abschn. 2.1.4) und das Eigenspannungs- sowie Verformungsverhalten in Hybridlaminaten (Abschn. 2.1.5). Recherchen zu Simulationsmethoden (Abschn. 2.1.6) sowie die Fertigung von Hybridlaminaten (Abschn. 2.1.7) insbesondere im Rollformverfahren (Abschn. 2.1.8) liefern weiteren wichtigen Input für das Projekt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. http://www.ingenieur.de/Branchen/Luft-Raumfahrt/Das-neue-Dach-Airbus-A380. Zugegriffen am 17.04.2015

  2. http://www.automobil-industrie.vogel.de/karosserie/articles/410694/. Zugegriffen am 17.04.2015

  3. Jäschke A, Dajek U (2004) Dachrahmen in Hybridbauweise. VDI-Tagungsband Nr. 4260:25–45. VDI, Düsseldorf

    Google Scholar 

  4. http://www.k-zeitung.de/das-sechste-element-im-auto/150/1200/71672/. Zugegriffen am 17.04.2015

  5. http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/kunststoffverarbeitung_gummiverarbeitung/articles/357184/. Zugegriffen am 17.04.2015

  6. http://www.industrieanzeiger.de/home/-/article/12503/15971729/Organoblech-%E2%80%93-Alternative-zu-Stahl-undAluminium/art_co_INSTANCE_0000/maximized/industrieanzeiger marktaktuell. Zugegriffen am 17.04.2015

  7. Van Roojnen R, Sinke J, De Vries TJ, Van Der Zwaag S (2004) Property optimisation in fibre metal laminates. Appl Compos Mater 11(2):63–76

    Article  Google Scholar 

  8. Sinmazcelik T, Avcu E, Özgür Bora M, Coban O (2011) A review: fibre metal laminates, background, bonding types and applied test methods. Mater Des 32(7):3671–3685

    Article  Google Scholar 

  9. Park SY, Choi WJ, Choi HS (2010) A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring. Int J Adv Manuf Technol 49(5–8):605–613

    Article  Google Scholar 

  10. Sinke J (2003) Manufacturing of GLARE parts and structures. Appl Compos Mater 10(4–5):293–305

    Article  Google Scholar 

  11. Subbaramaiah R, Lim SH, Prusty BG, Pearce G, Kelly D, Thompson R (2013) Rubber pad forming of GLARE cruciform using numerical and experimental analysis. In: ICCM19 the 19th international conference on composite materials, Montreal

    Google Scholar 

  12. Djokic D, Johnston A, Rogers A, Lee-Sullivan P, Mrad N (2002) Residual stress development during the composite patch bonding process: measurement and modeling. Compos A: Appl Sci Manuf 33(2):277–288

    Article  Google Scholar 

  13. Hagenbeek M, van Hengel C, Bosker OJ, Vermeeren CAJR (2003) Static properties of fibre metal laminates. Appl Compos Mater 10(4–5):207–222

    Article  Google Scholar 

  14. Hofslagere P (2003) Residual stress measurement on fibre-metal-lamintes. J Neutron Res 11(4):215–220

    Article  Google Scholar 

  15. Jumbo FS, Ashcroft IA, Crocombe AD, Abdel Wahab MM (2010) Thermal residual stress analysis of epoxy bi-material laminates and bonded joints. Int J Adhes Adhes 30(7):523–538

    Article  Google Scholar 

  16. Khan SU, Alderliesten RC, Benedictus R (2009) Post-stretching induced stress redistribution in fibre metal laminates for increased fatigue crack growth resistance. Compos Sci Technol 69(3–4):396–405

    Article  Google Scholar 

  17. Kim HS, Park SW, Hwang HY, Lee DG (2006) Effect of the smart cure cycle on the performance of the co-cured aluminium/composite hybrid shaft. Compos Struct 75(1–4):276–288

    Article  Google Scholar 

  18. Kim HS, Park SW, Lee DG (2006) Smart cure cycle with cooling and reheating for co-cure bonded steel/carbon epoxy composite hybrid structures for reducing thermal residual stress. Compos A: Appl Sci Manuf 37(10):1708–1721

    Article  Google Scholar 

  19. Xue J, Wang W-X, Takao Y, Matsubara T (2011) Reduction of thermal residual stress in carbon fiber aluminum laminates using a thermal expansion clamp. Compos A: Sci Manuf 42(8):986–992

    Article  Google Scholar 

  20. Yu Y, Ashcroft IA, Swallow G (2006) An experimental investigation of residual stresses in an epoxy-steel laminate. Int J Adhes Adhes 26:511–519

    Article  Google Scholar 

  21. Lin CT, Kao PW (1995) Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminum laminates. Mater Sci Eng 190(1–2):65–73

    Article  Google Scholar 

  22. Wang W-X, Takao Y, Matsubara T (2007) Galvnic corrosion-resistant carbon fiber metal-laminates. In: 16th international conference on composite materials, Kyoto, Japan, S 1–10

    Google Scholar 

  23. Silva DF, Botelho EC, Ancelotti AC, Damato CA (2013) Environmental conditioning effects on the mechanical properties of titanium fiber-metal-laminates. In: ICCM19 – the 19th international conference on composite materials, Montreal

    Google Scholar 

  24. Kolesnikov B, Stefaniak D, Wölper J, Hühne C (2012) Adaptive, tolerant and efficient composite structures. In: Wiedemann M, Sinapius M (Hrsg) Fibre-metal-laminate-laminate struts. Springer-Verlag, Berlin/Heidelberg, S 263–274

    Google Scholar 

  25. Kolesnikov B, Fink A, Hühne C, Stefaniak D, Borgwardt H (2010) Strukturelement aus einem Hybridlaminat. DE102010035324A1, Patentschrift

    Google Scholar 

  26. Stefaniak D, Fink A, Kolesnikov B, Hühne C (2011) Improving the mechanical performance of CFRP by metal-hybridization. In: ICCS16 – 16th international conference on composite structures, Porto

    Google Scholar 

  27. Stefaniak D, Kolesnikov B, Kappel E, Hühne C (2012) Improving impact endangered CFRP structures by metal-hybridisation. In: 12th European conference on spacecraft structues, materials & environmental testing, Nordwijk, Netherlands

    Google Scholar 

  28. Stefaniak D, Kappel E, Kolesnikov B, Hühne C (2012) Improving the mechanical performance of unidirectional CFRP by metal-hybridization. In: ECCM15 – 15th European conference on composite materials, Venice, Italy

    Google Scholar 

  29. http://www.edag.de/de/pr/press/newsmeldung/article/18/erleben-was-sich-bewegt-iaa-2013.html. Zugegriffen am 17.04.2015

  30. http://www.edag-light-car.com/#/das-konzept. Zugegriffen am 17.04.2015

  31. http://www.voestalpine.com/blog/de/mobilitaet/futuresteelvehicle-globale-road-show/. Zugegriffen am 15.12.2018

  32. http://www.netcomposites.com/news/tecabs-demonstrates-high-production-cfrp-for-automotive-body-structures/2343. Zugegriffen am 17.04.2015

  33. http://www.autopreforms.de/. Zugegriffen am 17.04.2015

  34. Herrmann A, Friedrich M, Klein-Lassek M (2006) AUTO-RTM – highly automated process chain for the production of carbon-fiber reinforced components. In: DELMIA European user conference, Fellbach

    Google Scholar 

  35. http://www.forschung-fuer-die-zukunft.de/index.php?option=show_exponate&funktion=exponate_show_detail&id=2075. Zugegriffen am 15.12.2018

  36. Rudolf R (2000) Entwicklung einer neuartigen Prozess- und Anlagentechnik zum wirtschaftlichen Fügen von thermoplastischen Faser-Kunststoff-Verbunden, Dissertation. Band10, Kaiserslautern: Prof. Dr.-Ing. M. Neitzel (Hrsg.), Institut für Verbundwerkstoffe GmbH, Technische Universität Kaiserslautern

    Google Scholar 

  37. Golde HD (1995) Ultraschall-Metallschweißen: Funktionsweise und Anwendung einer hochwertigen Verbindungstechnik. Verlag Moderne In-dustrie, Landsberg/Lech

    Google Scholar 

  38. Balle F (2009) Ultraschallschweißen von Metall/C-Faser-Kunststoff (CFK) – Verbunden, Dissertation. Band 22, Kaiserslautern: Prof. Dr.- Ing.habil. D. Eifler (Hrsg.), Lehrstuhl für Werkstoffkunde, Technische Universität Kaiserslautern

    Google Scholar 

  39. Krüger S, Wagner G, Eifler D (2004) Ultrasonic welding of metal/composite joints. Adv Eng Mater 6(3, Weinheim: Wiley-VCH Verlag):157–159

    Article  Google Scholar 

  40. Wagner G, Roeder E, Wagner J, Woltersdorf J, Pippel E (1995) Interlayer mi-crostructure and bonding behaviour of ultrasonic-welded aluminium oxid/aluminium joints. Phys Status Solidi (a) Jahrg 150(2, Weinheim: Wiley-VCH Verlag):307–317

    Google Scholar 

  41. Ehrenstein GW (2006) Faserverbundkunststoffe, Werkstoffe – Verarbeitung – Eigenschaften, 2., völlig überarbeitete Aufl. Carl Hanser Verlag, München

    Google Scholar 

  42. Velthuis R (2007) Induction welding of fiber reinforced thermoplastic polymer composites to metal, Dissertation. Band 75, Kaiserslautern: Prof. Dr.-Ing. A. K. Schlarb (Hrsg.), Institut für Verbundwerkstoffe, Technische Universität Kaiserslautern

    Google Scholar 

  43. Schmeer S (2009) Experimentelle und simulative Analysen von induktionsge-schweißten Hybridverbindungen, Dissertation. Band 89, Kaiserslautern: Prof. Dr.-Ing. P. Mitschang (Hrsg.), Institut für Verbundwerkstoffe GmbH, Techni-sche Universität Kaiserslautern

    Google Scholar 

  44. Ehrenstein GW (2004) Handbuch Kunststoff-Verbindungstechnik. Carl Hanser Verlag, München, S 179–196

    Google Scholar 

  45. Flock D (2011) Wärmepressfügen hybrider Kunststoff-Metall-Verbindungen, Dissertation. Rheinisch Westfälische Technische Hochschule Aachen

    Google Scholar 

  46. De Baere I, Van Paepegem W, Degrieck J (2012) Feasibility study of fusion bonding for carbon fabric reinforced polyphenylene sulphide by hot-tool welding. Journal of Thermoplastic Composite Materials 25(2):135–151

    Google Scholar 

  47. Baldan A (2004) Review adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: adhesives, adhesion theories and surface pretreatment. J Mater Sci 39:1–49

    Article  Google Scholar 

  48. Habenicht G (2006) Kleben. Springer, Berlin

    Google Scholar 

  49. Rider A, Shum IWE, Mirabella L (2005) Environmental durability trial of bonded composite repairs to metallic aircraft structures. DSTO Platforms Sciences Laboratory, Australia

    Google Scholar 

  50. Blohowiak KY, Osborne JH, Krienke KA (1999) A surface pretreatment of metals to activate the surface for sol-gel coating. US005869140, Patentschrift

    Google Scholar 

  51. Davis M, Bond D (1999) Principles and practices of adhesive bonded structural joints and repairs. Int J Adhes Adhes 99(2–3):91–105

    Article  Google Scholar 

  52. Molitor P, Barron V, Young T (2001) Surface treatment of titanium for adhesive bonding to polymer composites: a review. Int J Adhes Adhes 21(2):129–136

    Article  Google Scholar 

  53. Harris AF, Beevers A (1999) The effects of grit-blasting on surface properties for adhesion. Int J Adhes Adhes 19(6):445–452

    Article  Google Scholar 

  54. McCombe GP, Etches JA, Mellor PH, Bond IP (2011) Development of a ferromagnetic fibre metal laminate. Compos A: Sci Manuf 42(10):1380–1389

    Article  Google Scholar 

  55. Covino BS (1984) Information circular 8985, chapter pickling of stainless steels – a review. United States Department of Interieur, Bureau of Mines, Washington, DC

    Google Scholar 

  56. Covino BS, Scalera JV, Driscoll TJ, Carter JP (1986) Dissolution behaviour of 304 stainles steel in HNO3/HF mixtures. Metall Mater Trans A 17(1):137–149

    Article  Google Scholar 

  57. Schmitz A, Sen Gupta D, Peter H (1999) Verfahren zum Beizen von Werkstücken aus hochlegierten Werkstoffen. DE4417284 C2, Patentschrift

    Google Scholar 

  58. Honkanen M (2011) Injection-molded hybrids – characterization of metal-plastic interfacial features. PhD thesis, Tampere University of Technology

    Google Scholar 

  59. Honkanen M, Vippola M, Lepistö T (2011) Characterisation of stainless steel surfaces – modified in air at 350 °C. Surf Eng 27(5):325–331

    Google Scholar 

  60. Mazza JJ (2004) Sol-gel technology for low-VOC, Nonchromated adhesive bonding applications SERDP project PP-1113, Task 1. Storming Media, New York

    Google Scholar 

  61. Oliver MS, Blohowiak KY, Dauskardt RH (2008) Reliability of adhesive interphases for titanium-graphite laminates. In: SAMPE 2008, Long Beach, CA

    Google Scholar 

  62. Wong JT (2012) Evaluation of titanium bonding surface preparation method: sol-gel AC-130-2. In: American Helicopter Society 68th annual forum, Fort Worth, Texas

    Google Scholar 

  63. Zheludkevich ML, Miranda Salvado I, Ferreira MGS (2005) Sol-gel coatings for corrosion protection of metals. J Mater Chem 15:5099–5111

    Article  Google Scholar 

  64. Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents. Springer-Verlag, Berlin/Heidelberg. [48] Kominar V (1996) Thermo-mechanical regulation of residual stresses in polymers and polymer composites. J Compos Mater 30(3):406–415

    Book  Google Scholar 

  65. Ruiz E, Trochu F (2005) Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts. Compos A: Appl Sci Manuf 36(6):806–826

    Article  Google Scholar 

  66. Cowley KD, Beaumont PWR (1997) The measurement and prediction of residual stresses in carbon-fibre/polymer composites. Compos Sci Technol 57(1):1445–1455

    Article  Google Scholar 

  67. Gigliotti M, Wisnom MR, Potter KD (2003) Development of curvature during the cure of AS4/8552 [0/90] unsymmetric composite plates. Compos Sci Technol 63(2):187–197

    Article  Google Scholar 

  68. Gigliotti M, Jaquemin F, Vautrin A (2005) On the maximum curvatures of 0/90 plates under thermal stress. Compos Struct 68(2):177–184

    Article  Google Scholar 

  69. Kappel E, Stefaniak D, Hühne C (2012) Adaptive, tolerant and efficient composite structures. In: Wiedemann M, Sinapius M (Hrsg) Chapter about the spring-in phenomenon: quantifying the effects of thermal expansion and chemical shrinkage. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  70. Kappel E, Stefaniak D, Hühne C (2013) Process distortions in prepreg manufacturing – an experimental study on CFRP L-profiles. Compos Struct 106:615–625

    Google Scholar 

  71. Kappel E (2013) Distortions in composite manufacturing – from an experimental characterization to a prediction approach for the global scale. PhD thesis, Otto von Guericke University Magdeburg

    Google Scholar 

  72. Radford DW, Rennick TS (2000) Seperating sources of manufacturing distortion in laminated composites. J Reinf Plast Compos 19(8):621–641

    Article  Google Scholar 

  73. Albert C, Fernlund G (2002) Spring-in and warpage of angled composite laminates. Compos Sci Technol 62(14):1895–1912

    Article  Google Scholar 

  74. Svanberg JM (2002) Predictions of manufacturing induced shape distortions- high performance thermoset composites. PhD thesis, Lulea University of Techology, Lulea University of Technilogy, Sweden

    Google Scholar 

  75. Wisnom MR, Gigliotti M, Ersoy N, Campbell M, Potter KD (2006) Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures. Compos A: Appl Sci Manuf 37(4):522–529

    Article  Google Scholar 

  76. Arafath ARA, Vaziri R, Poursartip A (2008) Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool: part I – flat geometries. Compos A: Appl Sci Manuf 39(7):1106–1117

    Article  Google Scholar 

  77. Arafath ARA, Vaziri R, Poursartip A (2009) Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool: part II – curved geometries. Compos A: Appl Sci Manuf 40(10):1545–1557

    Google Scholar 

  78. Radford DW (2010) Balancing mechanisms of distortion to yield distortion-free/shape stable composites. J Reinf Plast Compos 29(12):1875–1892

    Article  Google Scholar 

  79. Stefaniak D, Kappel E, Spröwitz T, Hühne C (2012) Experimental identification of process parameters inducing warpage of autoclave-processed CFRP parts. Compos A: Appl Sci Manuf 43(7):1081–1091

    Article  Google Scholar 

  80. Rohwer K, Kappel E, Stefaniak D, Wille T (2012) Spring-in and warpage – progess in simulating manufacturing aspects. In: Seventeenth international conference – mechanics of composite materials, Riga, Latvia

    Google Scholar 

  81. Garstka T, Ersoy N, Potter KD, Wisnom MR (2007) In situ measurements of through-the-thickness strains during processing AS4/8552 composite. Compos A: Appl Sci Manuf 38(12):2571–2526

    Article  Google Scholar 

  82. Hubert P, Poursartip A (2001) A method for the direct measurement of the fibre bed compaction curve of composite prepregs. Compos A: Appl Sci Manuf 32(2):179–187

    Article  Google Scholar 

  83. Fernlund G, Poursartip A, Twigg G, Albert C (2003) Residual stress, spring-in and warpage in autoclaved composite parts. In: 14th International Conference on Composite Materials (ICCM-14), San Diego, CA, USA, 14–18 July

    Google Scholar 

  84. Twigg G, Poursartip A, Fernlund G (2003) An experimental method for quantifying tool-part shear interaction during composite processing. Compos Sci Technol 63(13):1985–2002

    Article  Google Scholar 

  85. Twigg G, Poursartip A, Fernlund G (2004) Tool-part interaction in composites processing. Part I: experimental investigation and analytical model. Compos A: Appl Sci Manuf 35(1):121–133

    Article  Google Scholar 

  86. Larberg YR, Akermo M (2011) On the interply friction of different generations of carbon/epoxy prepreg systems. Compos A: Appl Sci Manuf 42(9):1067–1074

    Article  Google Scholar 

  87. Martin CJ, Seferis JC (1996) Frictional resistance of thermoset prepregs and its influence on honeycomb composites processing. Compos A: Appl Sci Manuf 27(10):943–951

    Article  Google Scholar 

  88. de Oliveira R, Lavanchy S, Chatton R, Constantini D, Michaud V, Salathé R, Manson J-AE (2008) Experimental investigation of the effect of the mould thermal expansion on the development of internal stresses during carbon fibre composite processing. Compos A: Appl Sci Manuf 39(7):1083–1090

    Article  Google Scholar 

  89. Ersoy N, Potter K, Wisnom MR, Clegg MJ (2005) An experimental method to study the frictional process during composites manuacturing. Compos A: Appl Sci Manuf 36(11):1536–1544

    Article  Google Scholar 

  90. Ersoy N, Potter K, Wisnom MR, Clegg MJ (2005) Development of spring-in angle during cure of a thermosetting composite. Compos A: Appl Sci Manuf 36(12):1700–1706

    Article  Google Scholar 

  91. Kaushik V, Raghavan J (2010) Experimental study of tool-part interaction during autoclave processing of thermoset polymer composite structures. Compos A: Appl Sci Manuf 41(9):1210–1218

    Article  Google Scholar 

  92. Zheng X, Raghavan J (2010) Role of tool-part interaction in process-induced warpage of autoclave-manufactured composite structures. Compos A: Appl Sci Manuf 41(9):1174–1183

    Article  Google Scholar 

  93. Kappel E, Stefaniak D, Spröwitz T, Hühne C (2011) A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP parts. Compos A: Appl Sci Manuf 42(12):1985–1994

    Article  Google Scholar 

  94. Khoun L, de Oliveira R, Michaud V, Hubert P (2011) Investigation of process-induced strains development by fibre Bragg grating sensors in resin transfer moulded composites. Compos A: Appl Sci Manuf 42(3):274–282

    Article  Google Scholar 

  95. White SR, Hahn HT (1993) Cure cycle optimization for the reduction of precessing-induced residual stresses in composite materials. J Compos Mater 27(14):1352–1378

    Article  Google Scholar 

  96. Yi S, Hilton HH (1998) Effects of thermo-mechanical properties of composites on viscosity, temperature and degree of cure in thick thermosetting composite laminates during curing process. J Compos Mater 32(7):600–614

    Article  Google Scholar 

  97. Kim HS, Lee DG (2006) Avoidance of fabricational thermal residual stresses in co-cure bonded metal-composite hybrid structures. J Adhes Sci Technol 20(9):959–997

    Article  Google Scholar 

  98. Ersoy N, Garstka T, Potter K, Wisnom MR, Porter D, Clegg M, Stringer G (2010) Development of the properties of a carbon fibre reinforced thermosetting composite through cure. Compos A: Appl Sci Manuf 41(3):401–409

    Article  Google Scholar 

  99. Fernlund G, Rahman N, Courdji R, Bresslauer M, Poursartip A, Willden K, Nelson K (2002) Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos A: Appl Sci Manuf 33(3):341–351

    Article  Google Scholar 

  100. Buhl J. Umformverhalten und Grenzen von Schichtverbundwerkstoffen, Dissertation. ISBN 978-3-8440-2822-5

    Google Scholar 

  101. Sun J, Gu Y, Li M, Ma X, Zhang Z (2012) Effect of forming temperature on the quality of hot diaphragm formed C-shaped thermosetting composite laminates. J Reinf Plast Compos 31:1074–1087

    Article  Google Scholar 

  102. Sun J, Gu YZ, Li M, Li YX, Zhang ZG (2013) Relationship between slipping friction of prepreg stacks and forming quality of hot diaphragm formed C-shaped thermosetting composite laminates. In: ICCM19 the 19th international conference on composite materials, Montreal

    Google Scholar 

  103. Tucker C (1997) Forming of advanced composites. Adv Compos Manuf. ISBN: 978-0-471-15301-6

    Google Scholar 

  104. Pandey RK, Sun CT (1999) Mechanism of wrinkle formation during the processing of composite laminates. Compos Sci Technol 59:403–417

    Article  Google Scholar 

  105. Lightfoot JS, Wisnom MR, Potter K (2013) A new mechanism for the formation of ply wrinkles due to shear between plies. Compos A: Sci Manuf 49(1):139–147

    Article  Google Scholar 

  106. Akermo M, Larberg YR, Sjölander J, Hallander P (2013) Influence of interply friction on the forming of stacked UD prepreg. In: ICCM19 the 19th international conference on composite materials, Montreal

    Google Scholar 

  107. Engel B, Selter O (2011) Potentiale und Fertigungsstrategien zur geometrischen Gestaltung von Profilbauteilen. UTF Sci III:1–30

    Google Scholar 

  108. Geyer S, Stricker N, Schmoeckel D (Hrsg) (1994) Innovative Fertigungs- und Planungssysteme für den Walzprofilieren, Neue Perspektiven für die Umformtechnik, Bd 5, Heft 16. IFB und PTU, Darmstadt

    Google Scholar 

  109. Nilsen T, Normann E (1986) Machine for adjustable longitudinal corrugation of sheet Materials. PTC-Patent WO 00 198 7004 375 A1, Blommenholm, 17 January

    Google Scholar 

  110. Sedlmaier A (2014) Simulation of roll forming process of 3D chassis long member and its industrial application. In: IDDRG conference, Paris, 1–4 June

    Google Scholar 

  111. Hennig R, Sedlmaier A, Abee A. Fabrication of load optimized truck members with variable cross sections by flexible roll forming. In: SCT2011 the 3rd international conference on steels in cars and trucks, 2011 – future trends in steel development, processing technologies and applications, 5–9 June, Salzburg, Austria, Verlag Stahleisen GmbH, Düsseldorf

    Google Scholar 

  112. Hennig R, Sedlmaier A (2011) Henry Wolfkamp, Bernard Rolfe, Matthias Weiss: understanding the shape defects in roll forming using a novel material characterising method. In: The 17th international symposium on plasticity and its current applications, CasaMagna Marriot Puerto Vallarta, Mexico, 3–8 January

    Google Scholar 

  113. Sedlmaier A, Hennig R, Abee A (2010) Making tubes with discontinuous cross sections by means of 3D roll forming. pipe & tube Pittsburgh 2010. In: Technology for profitable production; TPA and ITA conference, Holiday Inn Pittsburgh Airport, USA, 3–5 October

    Google Scholar 

  114. Sedlmaier A (2010) Development of roll forming applications by means of numerical analysis as a part of quality control. In: Cold rolled event by confederation of British metal forming, Birmingham, UK, 23 June

    Google Scholar 

  115. Guitierrez MA (Proform Coordinator), Labein-Tecnalia I, Eguia (Proform EMF Leader), Labein-Tecnalia S, Berner (Proform Roll Forming Leader) PtU, Hennigs C (Proform Laser Leader) LZH, Sedlmaier A (Proform Control Leader) data M Sheet Metal Solutions, Agnello A (Proform Validation Leader) Centro Ricerche Fiat, Bahillo J (Proform Integration Leader) Ingemat (2010) PROFORM: Profile Forming Innovation. In: IDDRG 50th anniversary conference „tools and technologies for the processing of ultra high strength steels“, Graz, Austria, 31 May–02 June, ISBN 978-3-85125-108-1

    Google Scholar 

  116. Poks B, Dietl T, Sedlmaier A (2009) Computer control for roll forming of profiles with discontinuous cross sections – 1st international congress on roll forming, Bilbao, 14–15 October, ISBN 978-84-88734-03-7

    Google Scholar 

  117. Sedlmaier A, Abee A (2009) On the quality improvement of roll formed profiles with variable cross sections. In: PLASTICITY 2009 – international symposium on plasticity, Frenchman’s Reef and Morning Star Marriott Beach Resort, 3–8 January

    Google Scholar 

  118. Abee A, Berner S, Sedlmaier A (2008) Accuracy improvement of roll formed profiles with variable cross sections. In: ICTP 2008 – 9th international conference on technology of plasticity, Hotel Hyundai, Gyeongju, Korea, 7–11 September

    Google Scholar 

  119. Ingvarsson L, Rudmann L (2008) Vorrichtung und Verfahren zum Rollformen, EP 1 661 636 B1/DE 000 060 132 646 T2, Firma Ortic 3D AB, Borlänge, Schweden, 23 January

    Google Scholar 

  120. Ingvarsson L, Rudman L (2002) A roll forming machine, WO 002 002 043 886 A1, Firma Ortic AB, Borlänge, Schweden, 06 June

    Google Scholar 

  121. Wedemeier A, Istrate A, Elvenkemper A, Kötter J, Groche P, Beiter P, Vietor T, Nehuis F (2012) Entwicklung einer hoch integrierten Profilbaukastenfamilie für den Automotive- und Transportsektor aus höher- und höchstfesten Mehrphasenstählen mit belastungsangepassten Blechdickenverläufen: HI-PAT; Schlussbericht zum gleichnamigen Forschungsvorhaben; Förderkennzeichen 03X3025. Salzgitter

    Google Scholar 

  122. Anbari B, Finet S (2005) Outil de formage pour la fabrication dún profilé, machine àprofilier, utilisation et élèment correspondant, EP 000 001 627 697 B1, Firma Wagon Automotive S.A., Poissy, 08 August

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Assing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assing, H. et al. (2021). Wissenschaftlicher und technischer Stand zu Beginn des Vorhabens. In: Wiedemann, M. (eds) Thermoplastische, rollgeformte Profile in Hybridbauweise 2 - TroPHy2. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62355-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62355-8_2

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62354-1

  • Online ISBN: 978-3-662-62355-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics