Skip to main content

Performance-Based Fault-Tolerant Control and Performance Recovery

  • Chapter
  • First Online:
Advanced methods for fault diagnosis and fault-tolerant control

Abstract

With steadily increasing demands for high product quality and production reliability as well as safety in industrial processes, FTC has received considerable attention in recent years, in both research and industrial application domains. This trend is well reflected by the great number of publications on FTC methods, some of them are given at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Mahmoud, J. Jiang, and Y. Zhang, Active Fault Tolerant Control Systems. London: Springer, 2003.

    Book  Google Scholar 

  2. M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant Control, 2nd Edition. Berlin Heidelberg: Springer, 2006.

    MATH  Google Scholar 

  3. H. Noura, D. Theilliol, J. Ponsart, and A. Chamseddine, Faul-Tolerant Control Systems: Design and Practical Applications. New York, NY, USA: Springer, 2009.

    Book  Google Scholar 

  4. Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Review in Control, vol. 32, pp. 229–252, 2008.

    Article  Google Scholar 

  5. I. Hwang, S. Kim, Y. Kim, and C. Seah, “A survey of fault detection, isolation, and reconfiguration methods,” IEEE Trans. Contr. Syst. Tech., vol. 18, pp. 636–653, 2010.

    Article  Google Scholar 

  6. S. Yin, B. Xiao, S. X. Ding, and D. Zhou, “A review on recent development of spacecraft attitude fault-tolerant control system,” IEEE Trans. on Industrial Electronics, vol. 63, pp. 3311–3320, 2016.

    Article  Google Scholar 

  7. K. Zhou and Z. Ren, “A new controller architecture for high performance, robust, and fault-tolerant control,” IEEE Trans. on Autom. Contr., vol. 46, pp. 1613–1618, 2001.

    Article  MathSciNet  Google Scholar 

  8. B. Jiang, Z. Gao, P. Shi, and Y. Xu, “Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models,” IEEE Trans. on Fuzzy Syst, vol. 18, pp. 1000–1007, 2010.

    Article  Google Scholar 

  9. X. Zhang, M. M. Polycarpou, and T. Parisini, “Adaptive fault diagnosis and fault-tolerant control of MIMO nonlinear uncertain systems,” Int. J. of Contr., vol. 83, pp. 1054–1080, 2010.

    Article  MathSciNet  Google Scholar 

  10. M. Liu and P. Shi, “Sensor fault estimation and tolerant control for ito stochatic systems with a descriptor sliding mode approach,” Automatica, vol. 49, pp. 1242–1250, 2013.

    Article  Google Scholar 

  11. Y. Yang, L. Li, and S. X. Ding, “A control-theoretic study on Runge-Kutta methods with application to real-time fault-tolerant control of nonlinear systems,” IEEE Trans. on Industrial Electronics, vol. 62, pp. 3914–3922, 2015.

    Google Scholar 

  12. Y. Yang, Y. Zhang, S. X. Ding, and L. Li, “Design and implementation of lifecycle management for industrial control applications,” IEEE Trans. on Control Systems Technology, vol. 23, pp. 1399–1410, 2015.

    Article  Google Scholar 

  13. S. Yin, H. Luo, and S. X. Ding, “Real-time implementation of fault-tolerant control systems with performance optimization,” IEEE Trans. on Industrial Electronics, vol. 61, pp. 2402–2411, 2014.

    Article  Google Scholar 

  14. H. Luo, X. Yang, M. Kruger, S. X. Ding, and K. Peng, “A plug-and play monitoring and control architecture for disturbance compensation in rolling mills,” IEEE-ASME Trans. on Mechatronics, vol. 23, pp. 200–210, 2018.

    Article  Google Scholar 

  15. K. Zhou, Essential of Robust Control. Englewood Cliffs, NJ: Prentice-Hall, 1998.

    Google Scholar 

  16. D. Liu, Y. Yang, L. Li, and S. X. Ding, “Control performance-based fault-tolerant control strategy for singular systems,” IEEE Trans. on Systems, Man, and Cybernetics: Systems, vol. (Early Access), 2020.

    Google Scholar 

  17. H. Han, Y. Yang, L. Li, and S. X. Ding, “Performance-based fault detection and fault-tolerant control for nonlinear systems with t-s fuzzy implementation,” IEEE Trans. on Cybernetics, vol. (Early Access), 2020.

    Google Scholar 

  18. L. Li, H. Luo, S. X. Ding, Y. Yang, and K. Peng, “Performance-based fault detection and fault-tolerant control for automatic control systems,” Automatica, vol. 99, pp. 308–316, 2019.

    Article  MathSciNet  Google Scholar 

  19. T.-T. Tay, I. Mareels, and J. B. Moore, High Performance Control. Springer Science + Business Media, 1998.

    Google Scholar 

  20. D.-Y. Wang, Y.-Y. Tu, C.-R. Liu, Y.-Z. He, and W.-B. Li, “Conotation and research of reconfigurability for space control systems: A review,” Acta Automatica Sinica, vol. 43, pp. 1687–1702, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven X. Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, S.X. (2021). Performance-Based Fault-Tolerant Control and Performance Recovery. In: Advanced methods for fault diagnosis and fault-tolerant control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62004-5_21

Download citation

Publish with us

Policies and ethics