Skip to main content

Populations-und Vegetationsökologie

  • Chapter
  • First Online:
Strasburger − Lehrbuch der Pflanzenwissenschaften
  • 29k Accesses

Zusammenfassung

Dieses Kapitel beschäftigt sich mit der Entwicklung und Zusammensetzung der Vegetation. Die Pflanzengemeinschaft an einem bestimmten Standort ist zwar letztlich das Resultat enorm komplizierter Wechselwirkungen von erdgeschichtlich jüngeren, historischen und aktuellen Prozessen mit der abiotischen Umwelt (Klima und Ausgangssubstrat; Kap. 26 und 27), ist aber ohne Kenntnisse der in ihr selbst ablaufenden Umbauprozesse und des Einflusses von Störungen nicht zu verstehen (◘ Abb. 23.1). Zahlreiche Komplexitätsebenen greifen bei dieser Thematik ineinander:

Körner, C. 2021 Populations-und Vegetationsökologie. In: Kadereit JW, Körner C, Nick P, Sonnewald U. Strasburger – Lehrbuch der Pflanzenwissenschaften. Springer Berlin Heidelberg, p. 1013–1054. ► https://doi.org/10.1007/978-3-662-61943-8_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Quellenverzeichnis

  • Brown JH, Lomolino MV (1998) Biogeography. Sinauer, Sunderland

    Google Scholar 

  • Brienen RJW and 14 co-authors (2020) Forest carbon sinks neutralized by pervasive growth.lifespan trade-offs. Nature communications 11:4241. https://doi.org/10.1038/s41467-020-17966-z

  • Brummitt NA, Bachman SP, Griffiths-Lee J et al (2015) Green plants in the red: a baseline global assessment for the IUCN sampled red list index for plants. PLoS ONE 10:e0135152. https://doi.org/10.1371/journal.pone.0135152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büntgen U, Krusic PJ, Permattei A, Coomes DA, Esper J, Myglan VS, Kirdyanov AV, Camarero JJ, Crivellaro A, Körner C (2019) Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Com 10:2171. https://doi.org/10.1038/s41467-019-10174-4

    Article  CAS  Google Scholar 

  • Diaz S, Settele J, Brondizio ES et al (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:6471. https://doi.org/10.1126/science.aax3100

    Article  CAS  Google Scholar 

  • Erb KH, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T, Gingrich S, Haberl H, Lauk C, Niedertscheider M, Pongratz J, Thurner M, Luyssaert S (2018) Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553:73–76

    Google Scholar 

  • Gause FG (1934) The struggle for existence. Williams & Wilkins, Baltimore

    Book  Google Scholar 

  • Gjaerevoll O (1990) Alpine plants. The Royal Norwegian Society of Sciences and Tapir Publishers, Trondheim

    Google Scholar 

  • Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689

    Article  PubMed  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology, 2. Aufl. Castlepoint, Thundersley

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Harper JL, Ogden J (1970) Reproductive strategy of higher plants. 1. Concept of strategy with special reference to Senecio vulgaris. J Ecol 58:681–998

    Article  Google Scholar 

  • Harte J (2003) Tail of death and resurrection. Nature 424:1006–1007

    Article  CAS  PubMed  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C et al (1999) Plant diversity and productivity experiments in european grasslands. Science 286:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huston MA (1993) Biological diversity, soils, and economics. Science 262:1676–1680

    Article  CAS  PubMed  Google Scholar 

  • Huston MA (1994) Biological diversity. Cambridge University Press, Cambridge

    Google Scholar 

  • IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Chapter 2.2. IPBES Secretariat, Bonn. https://ipbes.net/sites/default/files/ipbes_global_assessment_chapter_2_2_nature_unedited_31may.pdf. Zugegriffen am 20.01.2020

  • Jäger EJ, Müller-Uri Ch (1981, 1982) Wuchsform und Lebensgeschichte der Gefäßpflanzen. Universitäts- und Landesbibliothek Sachsen-Anhalt, Halle (Saale)

    Google Scholar 

  • Kahmen A, Perner J, Audorff V, Weisser W, Buchmann N (2005) Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands. Oecologia 142:606–615

    Article  PubMed  Google Scholar 

  • Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn J Ecol 17:70–87

    Google Scholar 

  • Knapp R (1965) Die Vegetation von Nord- und Mittelamerika und der Hawaii-Inseln. (The vegetation of North- and Central America and of the Hawaiianislands.) Vegetationsmonographien der einzelnen Großräume, Bd 1. Gustav Fischer, Stuttgart

    Google Scholar 

  • Körner C (2021) Alpine plant life (3. Aufl.) Springer, Cham

    Google Scholar 

  • Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016) Where, why and how? Explaining the low-temperature range limits of temperate tree species. J Ecol 104:1076–1088

    Article  CAS  Google Scholar 

  • Landolt E (2010) Flora indicativa. Haupt, Bern

    Google Scholar 

  • McArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Meusel H, Jäger E, Weinert E (1965–1992) Vergleichende Chorologie der zentraleuropäischen Flora, 3 Bde. Gustav Fischer, Jena

    Google Scholar 

  • Newbold T, Hudson LN, Contu S, Hill SLL, Beck J, Liu Y, Meyer C, Philips HRP, Scharleman JPW, Purvis A (2018) Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol 16:e2006841. https://doi.org/10.1371/journal.pbio.2006841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12

    Article  Google Scholar 

  • Pfadenhauer JS, Klötzli FA (2014) Vegetation der Erde. Springer Spektrum, Heidelberg

    Google Scholar 

  • Pretzsch H (2002) A unified law of spatial allometry for woody and herbaceous plants. Plant Biol 4:159–166

    Article  Google Scholar 

  • Rosenzweig ML (2003) How to reject the area hypothesis of latitudinal gradients. In: Blackburn TM, Gaston KJ (Hrsg) Macroecology: concepts and consequences. Blackwell, Oxford

    Google Scholar 

  • Roy J, Saugier B, Mooney HA (2001) Terrestrial global productivity. Academic, San Diego

    Google Scholar 

  • Sarukhan J (1974) Studies on plant demography – Ranunculus repens L., R. bulbosus L., and R. acris L. II Reproductive strategies and seed population dynamics. J Ecol 62:151–177

    Google Scholar 

  • Scherrer D, Körner C (2009) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Chang Biol 16:2602–2613

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Google Scholar 

  • Schmid B (2002) The species richness-productivity controversy. Trends Ecol Evol 17:113–114

    Article  Google Scholar 

  • Schmid B (2003) Biodiversität – die funktionelle Bedeutung der Artenvielfalt. Biol unserer Z 6:356–365

    Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Song X-P, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR (2018) Global land change from 1982 to 2016. Nature 560:639–643. https://doi.org/10.1038/s41586-018-0411-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spehn EM, Joshi J, Schmid B, Diemer M, Ch K (2000) Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Funct Ecol 14:326–337

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tralau H (1967) The phytogeographic evolution of the genus Ginkgo L. Bot Notiser 120:409–422

    Google Scholar 

  • Walther GR, Berger S, Sykes MT (2005) An ecological ‚footprint‘ of climate change. Proc R Soc Lond Ser B-Biol Sci 272:1427–1432

    Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364

    Article  CAS  PubMed  Google Scholar 

  • Weisser WW, Roscher C, Meyer ST et al (2017) Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl Ecol 23:1–73

    Article  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2. Aufl. MacMillan, New York

    Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644

    Article  PubMed  Google Scholar 

  • de Witte LC, Armbruster GFJ, Gielly L, Taberlet P, Stocklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Mol Ecol 21:1081–1097

    Article  PubMed  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Zukrigl K, Eckhardt G, Nather J (1963) Standortskundliche und waldbauliche Untersuchungen in Urwaldresten der niederösterreichischen Kalkalpen. Mitt Forstl Bundesversuchsanst Mariabrunn 62

    Google Scholar 

Weiterführende Literatur

  • Beierkuhnlein C (2006) Biogeographie. Ulmer, Stuttgart

    Google Scholar 

  • Crawley MJ (1997) Plant ecology, 2. Aufl. Blackwell, Oxford

    Google Scholar 

  • Cox CB, Moore PD (2005) Biogeography – an ecological and evolutionary approach. Blackwell, Oxford

    Google Scholar 

  • Fenner M (1985) Seed ecology. Chapman & Hall, London/New York

    Book  Google Scholar 

  • Frey W, Lösch R (2004) Lehrbuch der Geobotanik, 2. Aufl. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Gibson DJ (2002) Methods in comparative plant population ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hastings A (1997) Population Biology – concepts and models. Springer, New York

    Google Scholar 

  • Keddy PA (2001) Competition, 2. Aufl. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Kratochwil A, Schwabe A (2001) Ökologie der Lebensgemeinschaften. Ulmer, Stuttgart

    Google Scholar 

  • Pott R (2005) Allgemeine Geobotanik: Biogeosysteme und Biodiversität. Springer, Berlin

    Book  Google Scholar 

  • Pott R, Hüppe J (2007) Spezielle Geobotanik: Pflanze, Klima, Boden. Springer, Heidelberg

    Google Scholar 

  • Rabotnov TA (1995) Phytozönologie: Struktur und Dynamik natürlicher Ökosysteme. Ulmer, Stuttgart

    Google Scholar 

  • Schroeder FG (1998) Lehrbuch der Pflanzengeographie. Quelle & Meyer, Wiesbaden

    Google Scholar 

  • Silvertown JW, Charlesworth D (2001) Introduction to plant population biology, 4. Aufl. Blackwell, Oxford

    Google Scholar 

  • Walter H (1986) Allgemeine Geobotanik als Grundlage einer ganzheitlichen Ökologie, 3. Aufl. Ulmer, Stuttgart

    Google Scholar 

  • Whittaker RJ, Fernàndez-Palacios JM (2007) Island biogeography – ecology, evolution and conservation, 2. Aufl. Oxford University Press, Oxford

    Google Scholar 

  • Woodward FI (1987b) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

Internetadresse

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körner, C. (2021). Populations-und Vegetationsökologie. In: Strasburger − Lehrbuch der Pflanzenwissenschaften. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61943-8_23

Download citation

Publish with us

Policies and ethics