Skip to main content

Chromatographische Trennmethoden für Peptide und Proteine

  • Chapter
  • First Online:
Bioanalytik
  • 24k Accesses

Zusammenfassung

Die Hochleistungsflüssigkeitschromatographie (HPLC) wurde in den letzten 30 Jahren zur unverzichtbaren Methode für die Trennung, Aufreinigung und Charakterisierung von synthetischen und biologischen Molekülen. Trotz großer Fortschritte, vor allem in der Instrumentierung, gibt es noch beachtliche Herausforderungen an die HPLC, wenn sie zur Analyse von biologischen Molekülen wie Peptiden und Proteinen in sehr komplexen Mischungen dienen soll, wie es z. B. in den Anwendungsbereichen Peptidomics, Proteomics und Degradomics der Fall ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur und Weiterführende Literatur

  • Anderson J, Berthod A, Pino V, Stalcup AM (2016) Analytical separation science, Bd 1−5. Wiley-VCH, Weinheim

    Google Scholar 

  • Boysen RI (2019) Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J Sep Sci 42(1):51–71

    Google Scholar 

  • Chothia C (1975) Structural invariants in protein folding. Nature 254:304–308

    Google Scholar 

  • Dawson RMC, Elliot DC, Elliot WH, Jones KM (1986) Data for biomedical research, 3. Aufl. Clarendon Press, Oxford

    Google Scholar 

  • Fanali S, Haddad PR, Poole C, Riekkola, ML (Hrsg) (2017) Liquid chromatography: fundamentals and instrumentation. 2. Aufl. Elsevier, Amsterdam

    Google Scholar 

  • Fanali S, Haddad PR, Poole C, Riekkola, ML (2017) Liquid chromatography: Applications. 2. Aufl. Elsevier, Amsterdam

    Google Scholar 

  • Gooding KM, Regnier FE (Hrsg) (2002) HPLC of biological macro-molecules, 2. Aufl. CRC Press, Boca Raton

    Google Scholar 

  • Hearn MTW (1991) HPLC of proteins, peptides and polynucleotides. VCH Verlagsgesellschaft, New York, Weinheim, Cambridge

    Google Scholar 

  • Henschen A, Hupe KP, Lottspeich F, Voelter W (Hrsg) (1987) High performance liquid chromatography in biochemistry. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Janson JC, Ryden L (1989) Protein purification. VCH Weinheim

    Google Scholar 

  • Kellner R, Lottspeich F, Meyer HE (Hrsg) (1998) Microcharacterization of proteins, 2. Aufl. Wiley-VCH, Weinheim

    Google Scholar 

  • Lundanes E, Reubsaet L, Greibrokk T (2013) Chromatography: basic principles, sample preparations and related methods. Wiley-VCH, Weinheim

    Google Scholar 

  • Mant CT, Hodges RS (1991) High-performance liquid chromatography of peptides and proteins: separation, analysis, and conformation. 1. Aufl. CRC Press, Boca Raton

    Google Scholar 

  • Meyer V (2010) Practical high-performance liquid chromatography. 5. Aufl. Wiley, Chichester

    Google Scholar 

  • Pesek JJ, Matyska MT, Boysen RI, Yang Y, Hearn MTW (2013) Aqueous normal phase chromatography using silica hydride-based stationary phases. Trends Anal Chem 42:64–73

    Google Scholar 

  • Rickard EC, Strohl MM, Nielsen RG (1991) Correlation of electrophoretic mobilities from capillary electrophoresis with physicochemical properties of proteins and peptides. Anal Biochem 197:197–207

    Google Scholar 

  • Simpson RJ (2003a) Proteins and proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Simpson RJ (2003b) Purifying proteins for proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Simpson RJ, Adams PD, Golemis EA (2008) Basic methods in protein purification and analysis: A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC method development. 2. Aufl. Wiley, Weinheim

    Google Scholar 

  • Snyder LR, Kirkland J.J. Dolan JW (2011) Introduction to modern liquid chromatography. 3. Aufl. Wiley, Hoboken

    Google Scholar 

  • Unger KK, Weber E (1995) Handbuch der HPLC. GIT, Darmstadt

    Google Scholar 

  • Vijayalakshmi MA (Hrsg) (2002) Biochromatography: theory and practice, 1. Aufl. Taylor & Francis, New York

    Google Scholar 

  • Wilce MCJ, Aguilar M-I, Hearn MTW (1995) Physicochemical basis of amino acid hydrophobicity scales: evaluation of four new scales of amino acid hydrophobicity coefficients derived from RP-HPLC of peptides. Anal Chem 67:1210–1219

    Google Scholar 

  • Wintermeyer U (1989) Die Wurzeln der Chromatographie: Historischer Abriss von den Anfängen bis zur Dünnschicht-Chromatographie. GIT

    Google Scholar 

  • Wixom RL, Gehrke CW (Hrsg) (2010) Chromatography – a science of discovery. Wiley, Hoboken, New Jersey

    Google Scholar 

  • Zamyatnin AA (1972) Protein volume in solution. Prog Biophys Mol Biol 24:107–123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Boysen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boysen, R. (2022). Chromatographische Trennmethoden für Peptide und Proteine. In: Kurreck, J., Engels, J.W., Lottspeich, F. (eds) Bioanalytik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61707-6_11

Download citation

Publish with us

Policies and ethics