Skip to main content

Ophthalmologisches Altern

  • Chapter
  • First Online:
Präventionsmedizin und Anti-Aging-Medizin
  • 2888 Accesses

Zusammenfassung

Spätestens ab der ersten Lesebrille wird einem das ophthalmologische Altern bewusst. Allerdings beginnt das Altern, auch und besonders im Auge, mit der Geburt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Abu-Amero KK, Morales J, Bosley TM (2006) Mitochondrial abnormalities in patients with primary open angle glaucoma. Invest Ophthalmol Vis Sci 47:2533–2541

    Article  PubMed  Google Scholar 

  • Anderson DR (2003) Collaborative normal tension glaucoma study. Ophthalmology 14(2):86–90

    Google Scholar 

  • Auffahrt G ( 2004) Pressekonferenz der Augenärztlichen Akademie Deutschlands(AAD), Düsseldorf

    Google Scholar 

  • Barcel-Coblijn G, Murphy EJ (2009) Alpha linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health. Prog Lipid Res 48:355–374

    Article  Google Scholar 

  • Beidoe G, Monsa A (2012) Current primary open angle glaucoma treatments and future directions. Clin Ophtalmol 6:1699–1702

    CAS  Google Scholar 

  • Berendschot M, Kilijstra A, Rob L (2014) The effect of lutein supplementation on blood plasma levels of complement factor D, C5a and C3d. PLoS ONE 9:e 108178

    Google Scholar 

  • Berti V, Walters M, Sterling J et al (2018) Mediterranean diet and 3-years Alzheimer brain biomarker changes in middle-aged adults. Neurology 90:e 1789–e 1798

    Article  Google Scholar 

  • Bone RA (2001) Macular pigment in donor eyes with and without age-related macular degeneration. Clin Ophthalmol Vis Sci 42:235–240

    CAS  Google Scholar 

  • Bovier K, Renzi L, Hammond B (2014) A double-blind, placebo-controlled study on the effect of lutein and zeaxanthin on neuronal processing speed and efficiency. PLoS ONE 9:e 108178

    Article  Google Scholar 

  • Carneiro A, Andrade JP (2017) Nutritional and lifestyle interventions for age-related macular degeneration: a review. Oxidative Med Cell Longev. 1-13. 10.1155/20127/6469138

    Google Scholar 

  • Chapman NA, Jacobs RJ, Braakhuis AJ (2018) Role of diet and food intake in age-related macular degeneration: a systematic review. Clin Exp Ophthalmol. https://doi.org/10.1111/ceo.13343

  • Chung-Jung C, Robman L, McCarthy A et al (2010) Dietary carbohydrate in relation to cortical and nuclear lens opacities in the Melbourne Visual Impairment Project. Invest Ophtahalmol Visual Sci 51:2897–2905

    Article  Google Scholar 

  • Day P, Darby J, Langston W (1937) The identity of flavin with the cataract-prevention factor. J Nutr 13:389–399

    Article  CAS  Google Scholar 

  • DGE-special 02/2003 vom 29.04.2003: Neuer Bericht einer WHO/FAO-Experten-Gruppe zum Thema Gesundheit. Veröffentlicht DGE e.V.

    Google Scholar 

  • Di Naso FC (2010) Aminoguanidine reduces oxidative stress and structural lung changes in experimental diabetes mellitus. J Bras Pneumol 36(4):36–38

    Article  Google Scholar 

  • Dinu M, Pagliai G, Casini A, Sofi R (2019) Food groups and risk of age-related macular degeneration: a systematic review with meta-analysis. Eur J Nutr 58(5):2123–2143

    Article  PubMed  Google Scholar 

  • EFSA (2010) Scientific opinion on dietary reference values for fats and cholesterol. EFSA J 8(3):1461

    Google Scholar 

  • Ehrlich R, Winston DM, Moore DB et al (2009) Age-related vascular changes. Graefes Arch Clin Exp Ophthalmol 247:583–591

    Article  PubMed  Google Scholar 

  • Erb C (2005) Die Rolle der endothelialen Dysfunktion beim Glaukom. Klin Mbl Augenheilkd 222(S7):V3

    Google Scholar 

  • Erb C (2011) Oxidativer Stress beim Offenwinkelglaukom. Ophtalmologie 5:320–326

    Google Scholar 

  • Erb C, Predel HG (2014) Die Bedeutung der arteriellen Hypertonie beim primären Offenwinkelglaukom. Klin Mbl Augenheilkd 231:136–143

    Article  CAS  Google Scholar 

  • Fato R, Bergami C, Leoni S et al (2010) CoQ10 vitreous levels after administration of CoQ10 eyedrops in patients undergoing vitrectomy. Acta Ophtalmol 88:e 150–e 151

    Article  CAS  Google Scholar 

  • Feilchenfeld Z, Yücel YH, Gupta N (2008) Oxidative injury to blood vessels and glia of the pre-laminar optic nerve head in human glaucoma. Exp Eye Res 87:409–414

    Article  CAS  PubMed  Google Scholar 

  • Finnemann SC, Leung LW et al (2002) The lipofuscin component A2E selectivly inhibits phagolysosomal degradation of photoreceptor phospholipids by the retinal pigment epithelium. Proc Natl Acad Sci USA 99(6):3842–3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galassi F, Soi A, Ucci F et al (2003) Ocular hemodynamics and glaucoma prognosis. Arch Ophthalmol 21:711–715

    Google Scholar 

  • Gauthier A, Liu J (2016) Neurodegeneration and neuroprotection in glaucoma. Yale J Biol Med 89(1):73–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield DS, Girkin C, Kwon YH (2005) Memantine and progressive glaucoma. J Glaucoma 14:84–86

    Article  PubMed  Google Scholar 

  • Grieb P, Jünemann A, Rejdak R (2016) Citicoline: a food beneficial for patients suffering or threated glaucoma. Front Aging Neurosci 8:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Ham WT, Mueller HA, Sliney DH (1976) Retinal sensitivity to damage from short wavelight. Nature 260:153–155

    Article  PubMed  Google Scholar 

  • Hankinson SE, Stampfer MJ, Seddon JM et al (1992) Nutrient intake and cataract extraction in women: a prospective study. Br Med J 305:335–339

    Article  CAS  Google Scholar 

  • He Y, Ge J, Tombran-Tink J (2008) Mitochondrial defects and dysfunction in calcium regulation in glaucomateus trabecular meshwork cells. Invest Ophthalmol Vis Sci 49:4912–4922

    Article  PubMed  Google Scholar 

  • Heijl A (2011) Perimetry, tonometry and epidemiology: the fate of glaucoma management. Acta Ophthalmol 89:309–315

    Article  PubMed  Google Scholar 

  • Heijl A, Leske MC, Hyman L et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Article  PubMed  Google Scholar 

  • Hsu KH, Chauhan A, Plummer C et al (2015) Dual drug delivery from vitamin E-loaded contact lenses for glaucoma therapy. Eur J Pharm Biopharm 94:312–321

    Article  CAS  PubMed  Google Scholar 

  • Hüning G (2018) Omega-3-Fettsäuren: Diätfehler. Dtsch Arztebl 115(11):A–485

    Google Scholar 

  • Huysmann J, Fischer F (1942) Über die Ursachen der hohen Vitamin C-Konzentrationen von Kammerwasser und Linse. Ophthalmology 103:21–34

    Article  Google Scholar 

  • Jasien J, Jost B, Ritch R (2015) Intraocular pressure rise in subjects with and without glaucoma during four common yoga positions. PLoS One 10(12):e0144505

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamel K, Farrel M, O’Brien C (2017) Mitochondrial dysfunction in ocular diseases. Focus on glaucoma. Mitochondrion 35:44–53

    Article  CAS  PubMed  Google Scholar 

  • Kapetanakis V, Chan MP, Foster PJ et al (2015) Global variation and time trends in the prevalence of primary open-angle glaucoma. Br J Ophthalmol 100:86–93

    Article  PubMed  Google Scholar 

  • Ko ML, Peng PA, Ma M et al (2005) Dynamic changes in reactive oxygen species and antioxidant levels in retinas in experimental glaucoma. Free Radic Biol Med 39:365–379

    Article  CAS  PubMed  Google Scholar 

  • Kolko M (2015) Present and new treatment strategies in the management of glaucoma. Open Ophthalmol J 9:89–100

    Article  CAS  PubMed Central  Google Scholar 

  • Konieczka K, Flammer J (2016) Phänomenologische und klinische Bedeutung des Flammer-Syndroms. Klin Mbl Augenheilkd 100:1331–1336

    Google Scholar 

  • Korb CA, Kottler UB, Wolfram C et al (2014) Prevalence of age-related macular degeneration in a large European cohort – The Gutenberg Health Study. Graefes Arch Clin Exp Ophthalmol 252(9):1403–1411

    Article  PubMed  Google Scholar 

  • Kuklinski B (2015) Das primäre Offenwinkelglaukom – eine Folge der Genickinstabilität. OM&Ernährung 15:F2–F8

    Google Scholar 

  • Kwon YH, Fingert JH, Kühn M (2009) Primary open-angle glaucoma. N Engl J Med 360:1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levkovitch-Verbin H, Kalev-Landog M, Melamed S (2006) Minocycline delays death of retinal ganglion cells in experimental glaucoma and after nerve transsection. Arch Ophthalmol 124:520–526

    Article  CAS  PubMed  Google Scholar 

  • Lindblad BE, Hakannson N, Wolk A (2007) Alcohol consumption and the risk oc cataract extraction. Ophthalmology. https://doi.org/10.1016/j.ophta.2006.07.046

  • Lindblad BE, Hakannson N, Wolk A (2014) Smoking cessation and the risk of age-related cataract: a prospective cohort study of cataract extraction amoung men. JAMA Opthalmol 132:253–257

    Article  Google Scholar 

  • Linetsky M, Raghavan CT et al (2014) UVA-light-excited kynurenins oxidize ascorbate and modify lens protein through the formation of advanced glycation products. J Biol Chem. https://doi.org/10.1074/jbc.M114.554410

  • Liu X, Rodenwald P (2004) Antidiabetic effect of french maritime pine bark extract in patients with diabetes type II. Life Sci 75:2505–2513

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Cho E, Taylor A et al (2005a) Prospective study of dietary fat and risk of cataract extraction. Am J Epidemiol 161:948–954

    Article  PubMed  Google Scholar 

  • Lu M, Taylor A, Chylack LT et al (2005b) Dietary fat intake and early aged-related lens opacities. Am J Clin Nutr 81:773–779

    Article  CAS  PubMed  Google Scholar 

  • Lulli M, Witort E, Papucci L et al (2012a) CoQ10 instilled in eye drops on the cornea reaches the retina and protects retinal layer from apoptosis in a mouse model of Kainat-induced retinal damage. Invest Ophthalmol Vis Sci 53(13):8295–8302

    Article  CAS  PubMed  Google Scholar 

  • Lulli M, Witort E, Papucci L et al (2012b) CoQ10 protects retinal cells from apoptosis induced radiation in vitro and in vivo. J Radiat Res 53(5):695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantzioris E, James MJ, Gibson RA et al (1994) Dietary substitution with alpha-linolenic acid-rich vegetable oil increases eicosapentaonic acid concentrations in tissues. Am J Clin Nutr 59(6):1304–1309

    Article  CAS  PubMed  Google Scholar 

  • McDermott AB, Meyer ML, Westbrook G et al (1986) NMDA-receptor activation increases cytoplasmatic calcium concentration in cultured spinal cord neurons. Nature 321:519–522

    Article  Google Scholar 

  • McElnea M, Quill B, Doherty NG et al (2011) Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribosa cells from glaucoma donors. Mol Vis 17:1182–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura T, Furatsu H, Noma H et al (2018) Aqueos humor levels of cytokinesin in patients with age-related macular degeneration. Ophthalmologica 26:1–9

    Google Scholar 

  • Moeller SM, Voland R, Tinker R et al (2008) Association between age-related cataract and lutein and zeaxanthin in the diet and serum in the carotenoids in the Age-Related-Eye-Disease-Study. Arch Ophthalmol 126(3):354–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Mojon DS, Hess CW, Goldblum D et al (2000) Primary open-angle glaucoma is associated with obstructive sleep apnoe. Ophthalmoligica 214:115–118

    Article  CAS  Google Scholar 

  • Moreno MC, Campagnelli J, Sarde P et al (2004) Oxidative stress induced by high ocular pressure. Free Radical Mol Biol Med 37:80312

    Google Scholar 

  • Neatrour K, McAlpine A, Lynn J et al (2019) Evaluation of the etiology of persistent iritis after cataract surgery. J Ophthalmic Inflamm Infect 9(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Neufeld HA (2004) Pharmacologic neuroprotection with an inhibitor of nitric oxid synthetase for treatment glaucoma. Brain Res Bull 62:455–459

    Article  CAS  PubMed  Google Scholar 

  • Nouri-Mahdavi K, Hoffmann D, Colemann A et al (2004) Predictiv factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 111:1627–1635

    Article  PubMed  Google Scholar 

  • Pennington KL, DeAngelis MM (2016) Epidemiology of age-related macular degenerations with cardiovascular disease phenotypes and lipid factors. Eye Vis (Lond) 3:34

    Article  Google Scholar 

  • Peschek J, Braun N, Rohrberg J (2013) et al.:Regulated structural Transitions unleash the chaperone activity of alpha-B-cristallin. PNAS 110(40):E3780–E3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillunat LE, Anderson D, Knighton R (1997) Aotoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 64(5):737–744

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Kaufmann Y, Washington I (2009) Coenzyme Q10 in the human retina. Invest Ophthalmol Vis Sci 50:1834–1838

    Article  Google Scholar 

  • Ramirez A, DeHoz R, Salazar J et al (2017) The role of microglia in the retinal neurodegeneration. Front Aging Neurosci 9:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Renzi-Hammond L, Hammond B, Lindbergh C et al (2017) Relationship of lutein and zeaxanthin levels to neurocognitive functioning: an fMRI study of older adults. J Int Neuropsychol Soc 23(1):11–22

    Article  PubMed  Google Scholar 

  • Rosen RB (2019) Retinal metabolic assesment using mitochondrial oxidation stress imaging. Vortrag im Rahmen der AAO 12.10.2019

    Google Scholar 

  • Schmitz-Valkenberg S, Fleckenstein M, Scholl HP et al (2009) Fundus autoflourescence and progression of age-related macular degeneration. Surv Ophtalmol 54(1):96–117

    Article  Google Scholar 

  • Shui YB, Holekamp NM, Kramer BC et al (2009) The gel state of the vitreous and ascorbat-depended oxygen consumption in relation to the etiology of nuclear cataracts. Arch Ophthalmol 127:475–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Souied E, Delcourt C, Querques G, Merle B et al (2013) NAT 2-Study Group: Omega 3-levels in red blood cell membranes correleates the preventive effects. Invest Ophthalmol Vis Sci 54:3277

    Google Scholar 

  • Steigerwalt RD, Gianni B, Paolo M et al (2008) Effects of Mirtogenol on ocular blood flow and intraocular hypertension in asymptomatic subjects. Mol Vis 14:1288–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss O (2005) Retinal pigment epithelium and visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  • Strempel I (Hrsg) (2013) Glaukom-mehr als ein Augenleiden. Kaden, Marburg

    Google Scholar 

  • Su W, Li Z, Jia Y et al (2014) Rapamycin is neuroprotective in rat chronic hypertensive glaucoma model. PLoS One 9:e99719

    Article  PubMed  PubMed Central  Google Scholar 

  • Thylefous B, Negrel AD, Dadzie KY et al (1995) Global data on blindness. Bull World Health Organ 73:115

    Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochem Biophys Acta 1660:171–179

    Article  CAS  PubMed  Google Scholar 

  • Vinson JA (2006) Oxidative stress in cataracts. Pathophsiology 13(3):151–162

    Article  CAS  Google Scholar 

  • Wing GL, Blanchard GC, Weiter JJ (2013) The topographie and age relationship of lipofuscin concentration in the retinal pigment epithelium. Assoc f Res and Vis in Ophthalmol. Annual Meeting May5–9, 2013, Seattle

    Google Scholar 

  • Yang F, Wu L, Guo X et al (2013) Improved retinal ganglion cell survival to retinal microglia supression by a chinese herb extract triptolide. Ocul Immunol Inflamm 21:378–389

    Article  CAS  PubMed  Google Scholar 

  • Yonekawa Y, Ivana K, Kim IK (2014) Clinical characteristics and current treatment of age-related macular degeneration. Cold Spring Harb Perspect Med 5(1):a017178

    Article  PubMed  Google Scholar 

  • Zhon J, Sparrow JR (2011) Light filtering in a retinal pigment epithelium cell culture model. Optom Vis Sci 88:759–765

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Billeit, S. (2022). Ophthalmologisches Altern . In: Kleine-Gunk, B., Wolf, A. (eds) Präventionsmedizin und Anti-Aging-Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61417-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61417-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61416-7

  • Online ISBN: 978-3-662-61417-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics