Skip to main content

Designing a Rehabilitation Programme for the Patient with Patellofemoral Pain

  • Chapter
  • First Online:
Patellofemoral Pain, Instability, and Arthritis

Abstract

Patellofemoral pain (PFP) is a highly prevalent condition, affecting up to 23% of the general and 28% of the adolescent population [1]. Recent evidence suggests that patellofemoral joint (PFJ) osteoarthritis is a sequelae of PFP [2, 3] challenging the traditional notion that adolescent anterior knee pain is a benign pathology. Furthermore, high levels of depression and anxiety are reported amongst patients suffering PFP [4]. It is therefore concerning that despite the implementation of evidence-based interventions including exercise therapy, the prognosis of this condition remains poor, with 40–56% of patients reporting ongoing symptoms 1–2 years following conservative treatment [5, 6]. It is estimated that over 50% of people with the condition will report symptoms continuing beyond 5 years following diagnosis [7]. In addition, those patients who complain of high base levels of pain and longer duration of symptoms are typically found to have the most unfavourable recovery [5]. These poor long-term outcomes highlight that despite PFP populations being widely investigated, at present the answers on how best to manage these patients are lacking. With this in mind, how then does the treating clinician go about designing a successful rehabilitation programme for these patients? This chapter reviews current evidence in this field and discusses biomechanical principles to help guide how this might be achieved. We note that growing evidence highlights the importance of also considering psychological factors affecting this population [4], and these are discussed in a separate chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith BE, et al. Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis. PLoS One. 2018;13(1):e0190892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Conchie H, Clark D, Metcalfe A, Eldridge J, Whitehouse M. Adolescent knee pain and patellar dislocations are associated with patellofemoral osteoarthritis in adulthood: a case control study. Knee. 2016;23(4):708–11.

    Article  PubMed  Google Scholar 

  3. Wyndow N, Collins N, Vicenzino B, Tucker K, Crossley K. Is there a biomechanical link between patellofemoral pain and osteoarthritis? A narrative review. Sports Med. 2016;46(12):1797–808.

    Article  PubMed  Google Scholar 

  4. Maclachlan LR, Collins NJ, Matthews MLG, Hodges PW, Vicenzino B. The psychological features of patellofemoral pain: a systematic review. Br J Sports Med. 2017;51:732.

    Article  PubMed  Google Scholar 

  5. Collins NJ, Bierma-Zeinstra SM, Crossley KM, van Linschoten RL, Vicenzino B, van Middelkoop M. Prognostic factors for patellofemoral pain: a multicentre observational analysis. Br J Sports Med. 2013;47:227–33.

    Article  PubMed  Google Scholar 

  6. Michael SR, Camilla RR, Jens LO, Sten R, Ewa MR. Is knee pain during adolescence a self-limiting condition? Prognosis of patellofemoral pain and other types of knee pain. Am J Sports Med. 2016;44(5):1165–71.

    Article  Google Scholar 

  7. Lankhorst N, van Middelkoop M, Crossley K, Bierma-Zeinstra S, Oei E, Vicenzino B, Collins N. Factors that predict a poor outcome 5–8 years after the diagnosis of patellofemoral pain: a multicentre observational analysis. Br J Sports Med. 2016;50(14):881–6.

    Article  PubMed  CAS  Google Scholar 

  8. Post WR, Dye S. Patellofemoral pain: an enigma explained by homeostasis and common sense. Am J Orthop (Belle Mead NJ). 2017;46(2):92–100.

    Google Scholar 

  9. Ho K-Y, Hu HH, Colletti PM, Powers CM. Recreational runners with patellofemoral pain exhibit elevated patella water content. Magn Reson Imaging. 2014;32(7):965–8.

    Article  PubMed  Google Scholar 

  10. Sanchis-Alfonso V, Roselló-Sastre E. Immunohistochemical analysis for neural markers of the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. Am J Sports Med. 2000;28(5):725–31.

    Article  CAS  PubMed  Google Scholar 

  11. Farrokhi S, Keyak J, Powers C. Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study. Osteoarthr Cartil. 2011;19(3):287–94.

    Article  CAS  Google Scholar 

  12. Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res. 2005;(436):100.

    Google Scholar 

  13. van der Heijden RA, et al. No difference on quantitative magnetic resonance imaging in patellofemoral cartilage composition between patients with patellofemoral pain and healthy controls. Am J Sports Med. 2016;44(5):1172–8.

    Article  PubMed  Google Scholar 

  14. Trepczynski A, Kutzner I, Kornaropoulos E, Taylor WR, Duda GN, Bergmann G, Heller MO. Patellofemoral joint contact forces during activities with high knee flexion. J Orthop Res. 2012;30(3):408–15.

    Article  PubMed  Google Scholar 

  15. Brechter J, Powers C. Patellofemoral joint stress during stair ascent and descent in persons with and without patellofemoral pain. Gait Posture. 2002;16(2):115.

    Article  PubMed  Google Scholar 

  16. Tecklenburg K, Dejour D, Hoser C, Fink C. Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):235–40.

    Article  PubMed  CAS  Google Scholar 

  17. Collins NJ, Vicenzino B, Van Der Heijden RA, Van Middelkoop M. Pain during prolonged sitting is a common problem in persons with patellofemoral pain. J Orthop Sports Phys Ther. 2016;46(8):658–63.

    Article  PubMed  Google Scholar 

  18. van der Heijden R, Lankhorst N, van Linschoten R, Bierma-Zeinstra S, van Middelkoop M. Exercise for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2015;1:CD010387.

    PubMed  Google Scholar 

  19. Boling MC, Padua DA, Marshall SW, Guskiewicz K, Pyne S, Beutler A. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: the joint undertaking to monitor and prevent ACL injury (JUMP-ACL) cohort. Am J Sports Med. 2009;37(11):2108–16.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Noehren B, Pohl MB, Sanchez Z, Cunningham T, Lattermann C. Proximal and distal kinematics in female runners with patellofemoral pain. Clin Biomech. 2012;27(4):366–71.

    Article  Google Scholar 

  21. de Oliveira Silva D, Briani RV, Pazzinatto MF, Ferrari D, Aragão FA, de Azevedo FM. Reduced knee flexion is a possible cause of increased loading rates in individuals with patellofemoral pain. Clin Biomech. 2015;30(9):971–5.

    Article  Google Scholar 

  22. Salsich GB, Brechter JH, Powers CM. Lower extremity kinetics during stair ambulation in patients with and without patellofemoral pain. Clin Biomech. 2001;16(10):906–12.

    Article  CAS  Google Scholar 

  23. Cowan SM, Bennell KL, Hodges PW, Crossley KM, McConnell J. Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil. 2001;82(2):183–9.

    Article  PubMed  CAS  Google Scholar 

  24. Lieb FJ, Perry J. Quadriceps function: an anatomical and mechanical study using amputated limbs. JBJS. 1968;50(8):1535–48.

    Article  CAS  Google Scholar 

  25. Karst GM, Willett GM. Onset timing of electromyographic activity in the vastus medialis oblique and vastus lateralis muscles in subjects with and without patellofemoral pain syndrome. Phys Ther. 1995;75(9):813–23.

    Article  PubMed  CAS  Google Scholar 

  26. Laprade J, Culham E, Brouwer B. Comparison of five isometric exercises in the recruitment of the vastus Medialis oblique in persons with and without patellofemoral Pain syndrome. J Orthop Sports Phys Ther. 1998;27(3):197–204.

    Article  PubMed  CAS  Google Scholar 

  27. Giles LS, Webster KE, McClelland JA, Cook J. Atrophy of the quadriceps is not isolated to the vastus medialis oblique in individuals with patellofemoral pain. J Orthop Sports Phys Ther. 2015;45(8):613–9.

    Article  PubMed  Google Scholar 

  28. Chiu JK, Y-m W, Yung PS, Ng GY. The effects of quadriceps strengthening on pain, function, and patellofemoral joint contact area in persons with patellofemoral pain. Am J Phys Med Rehabil. 2012;91(2):98–106.

    Article  PubMed  Google Scholar 

  29. Noehren B, Hamill J, Davis I. Prospective evidence for a hip etiology in patellofemoral pain. Med Sci Sports Exerc. 2013;45(6):1120–4.

    Article  PubMed  Google Scholar 

  30. McKenzie K, Galea V, Wessel J, Pierrynowski M. Lower extremity kinematics of females with patellofemoral pain syndrome while stair stepping. J Orthop Sports Phys Ther. 2010;40(10):625–32.

    Article  PubMed  Google Scholar 

  31. Souza R, Powers C. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):12–9.

    Article  PubMed  Google Scholar 

  32. Willson JD, Davis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech. 2008;23(2):203–11.

    Article  Google Scholar 

  33. Prins MR, Van Der Wurff P. Females with patellofemoral pain syndrome have weak hip muscles: a systematic review. Aust J Physiother. 2009;55(1):9–15.

    Article  PubMed  Google Scholar 

  34. Rathleff M, Rathleff C, Crossley K, Barton C. Is hip strength a risk factor for patellofemoral pain? A systematic review and meta-analysis. Br J Sports Med. 2014;48 https://doi.org/10.1136/bjsports-2013-093305.

    Article  PubMed  CAS  Google Scholar 

  35. Fukuda TY, Rossetto FM, Magalhães E, Bryk FF, Garcia Lucareli PR, de Almeida Carvalho NA. Short-term effects of hip abductors and lateral rotators strengthening in females with patellofemoral pain syndrome: a randomized controlled clinical trial. J Orthop Sports Phys Ther. 2010;40(11):736–42.

    Article  PubMed  Google Scholar 

  36. Finnoff JT, Hall MM, Kyle K, Krause DA, Lai J, Smith J. Hip strength and knee pain in high school runners: a prospective study. PM R. 2011;3(9):792–801.

    Article  PubMed  Google Scholar 

  37. Herbst KA, Barber Foss KD, Fader L, Hewett TE, Witvrouw E, Stanfield D, Myer GD. Hip strength is greater in athletes who subsequently develop patellofemoral pain. Am J Sports Med. 2015;43(11):2747–52.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boling MC, Bolgla LA, Mattacola CG, Uhl TL, Hosey RG. Outcomes of a weight-bearing rehabilitation program for patients diagnosed with patellofemoral pain syndrome. Arch Phys Med Rehabil. 2006;87(11):1428–35.

    Article  PubMed  Google Scholar 

  39. Aminaka N, Pietrosimone BG, Armstrong CW, Meszaros A, Gribble PA. Patellofemoral pain syndrome alters neuromuscular control and kinetics during stair ambulation. J Electromyogr Kinesiol. 2011;21(4):645–51.

    Article  PubMed  Google Scholar 

  40. Lankhorst NE, Bierma-Zeinstra SM, van Middelkoop M. Factors associated with patellofemoral pain syndrome: a systematic review. Br J Sports Med. 2013;47(4):193–206.

    Article  PubMed  Google Scholar 

  41. Collins N, Crossley K, Beller E, Darnell R, McPoil T, Vicenzino B. Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: randomised clinical trial. BMJ. 2008;337:a1735.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ. High rate of recurrent patellar dislocation in skeletally immature patients: a long-term population-based study. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1037–43.

    PubMed  Google Scholar 

  43. Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renström P. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture. 2006;24(2):152–64.

    Article  PubMed  Google Scholar 

  44. Della Croce U, Leardini A, Chiari L, Cappozzo A. Human movement analysis using stereophotogrammetry: part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 2005;21(2):226–37.

    Article  PubMed  Google Scholar 

  45. Eckhoff DG, Montgomery WK, Kilcoyne RF, Stamm ER. Femoral morphometry and anterior knee pain. Clin Orthop Relat Res. 1994;(302):64–8.

    Google Scholar 

  46. Teitge R. Does lower limb torsion matter? Tech Knee Surg. 2012;11:137–46.

    Article  Google Scholar 

  47. Burden A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25years of research. J Electromyogr Kinesiol. 2010;20(6):1023–35.

    Article  PubMed  Google Scholar 

  48. Ettinger L, Weiss J, Shapiro M, Karduna A. Normalization to maximal voluntary contraction is influenced by subacromial Pain. J Appl Biomech. 2016;32(5):433–40.

    Article  PubMed  Google Scholar 

  49. De Luca CJ, Merletti R. Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalogr Clin Neurophysiol. 1988;69(6):568–75.

    Article  PubMed  Google Scholar 

  50. Farina D, Merletti R, Indino B, Nazzaro M, Pozzo M. Surface EMG crosstalk between knee extensor muscles: experimental and model results. Muscle Nerve. 2002;26(5):681–95.

    Article  PubMed  Google Scholar 

  51. Burkholder TJ, Fingado B, Baron S, Lieber RL. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol. 1994;221(2):177–90.

    Article  PubMed  CAS  Google Scholar 

  52. Volz R. Biomechanics update# 2. Basic biomechanics: lever arm, instant center of motion, moment force, joint reactive force. Orthop Rev. 1986;15(10):677.

    PubMed  CAS  Google Scholar 

  53. Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc Lond B Biol Sci. 2011;366(1570):1466–76.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Delp SL, Hess WE, Hungerford DS, Jones LC. Variation of rotation moment arms with hip flexion. J Biomech. 1999;32(5):493–501.

    Article  PubMed  CAS  Google Scholar 

  55. Clark JM, Haynor DR. Anatomy of the abductor muscles of the hip as studied by computed tomography. J Bone Joint Surg Am. 1987;69(7):1021–31.

    Article  PubMed  CAS  Google Scholar 

  56. Dostal WF, Soderberg GL, Andrews JG. Actions of hip muscles. Phys Ther. 1986;66(3):351–9.

    Article  PubMed  CAS  Google Scholar 

  57. Arnold AS, Delp SL. Rotational moment arms of the medial hamstrings and adductors vary with femoral geometry and limb position: implications for the treatment of internally rotated gait. J Biomech. 2001;34(4):437–47.

    Article  PubMed  CAS  Google Scholar 

  58. Arnold AS, Komallu AV, Delp SL. Internal rotation gait: a compensatory mechanism to restore abduction capacity decreased by bone deformity? Dev Med Child Neurol. 1997;39(1):40–4.

    Article  PubMed  CAS  Google Scholar 

  59. Witvrouw E, Werner S, Mikkelsen C, Van Tiggelen D, Berghe LV, Cerulli G. Clinical classification of patellofemoral pain syndrome: guidelines for non-operative treatment. Knee Surg Sports Traumatol Arthrosc. 2005;13(2):122–30.

    Article  PubMed  Google Scholar 

  60. Kendall FP, McCreary EK, Provance PG, et al. Muscles: testing and function, with posture and pain (Kendall, Muscles). Baltimore, MD: Lippincott Williams & Wilkins; 1993.

    Google Scholar 

  61. Norris CM. Spinal stabilisation: 4. Muscle imbalance and the low back. Physiotherapy. 1995;81(3):127–38.

    Article  Google Scholar 

  62. Khamis S, Dar G, Peretz C, Yizhar Z. The relationship between foot and pelvic alignment while standing. J Hum Kinet. 2015;46(1):85–97.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Janda V, Frank C, Liebenson C. Evaluation of muscular imbalance. Rehabilitation of the Spine: A Practitioner’s Manual. 1996;6:97–112.

    Google Scholar 

  64. Sanchis-Alfonso V. Anterior knee pain and patellar instability. London: Springer Science & Business Media; 2011.

    Book  Google Scholar 

  65. Bartlett M, Wolf L, Shurtleff D, Stahell L. Hip flexion contractures: a comparison of measurement methods. Arch Phys Med Rehabil. 1985;66(9):620–5.

    PubMed  CAS  Google Scholar 

  66. Sanchis-Alfonso V, McConnell J, Monllau JC, Fulkerson JP. Diagnosis and treatment of anterior knee pain. J ISAKOS. 2016;1(3):161–73.

    Article  Google Scholar 

  67. Tiberio D. The effect of excessive subtalar joint pronation on patellofemoral mechanics: a theoretical model. J Orthop Sports Phys Ther. 1987;9(4):160–5.

    Article  PubMed  CAS  Google Scholar 

  68. Earl JE, Hoch AZ. A proximal strengthening program improves pain, function, and biomechanics in women with patellofemoral pain syndrome. Am J Sports Med. 2011;39(1):154–63.

    Article  PubMed  Google Scholar 

  69. Marchetti PH, Kohn AF, Duarte M. Selective activation of the rectus abdominis muscle during low-intensity and fatiguing tasks. J Sports Sci Med. 2011;10(2):322.

    PubMed  PubMed Central  Google Scholar 

  70. Sanchis-Moysi J, Idoate F, Dorado C, Alayón S, Calbet JA. Large asymmetric hypertrophy of rectus abdominis muscle in professional tennis players. PLoS One. 2010;5(12):e15858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Botha N, Warner M, Gimpel M, Mottram S, Comerford M, Stokes M. Movement patterns during a small knee bend test in academy footballers with femoroacetabular impingement (FAI). Health Sci Working Papers. 2014;1(10):1–24.

    Google Scholar 

  72. Hewett TE, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501.

    Article  PubMed  Google Scholar 

  73. Olsen O-E, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–12.

    Article  PubMed  Google Scholar 

  74. Reiman MP, Bolgla LA, Lorenz D. Hip function’s influence on knee dysfunction: a proximal link to a distal problem. J Sport Rehabil. 2009;18(1):33–46.

    Article  PubMed  Google Scholar 

  75. Shield AJ, Bourne MN. Hamstring injury prevention practices in elite sport: evidence for eccentric strength vs. lumbo-pelvic training. Sports Med. 2018;48(3):513–24.

    Article  PubMed  Google Scholar 

  76. Standring S. Gray’s anatomy: the anatomical basis of clinical practice: Elsevier Limited, London; 2016.

    Google Scholar 

  77. Stephen JM, Sopher R, Tullie S, Amis AA, Ball S, Williams A. The infrapatellar fat pad is a dynamic and mobile structure, which deforms during knee motion, and has proximal extensions which wrap around the patella. Knee Surg Sports Traumatol Arthrosc. 2018;26:3515–24.

    Article  PubMed  Google Scholar 

  78. ACoS M. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687.

    Article  Google Scholar 

  79. Østerås B, Østerås H, Torstensen TA, Vasseljen O. Dose–response effects of medical exercise therapy in patients with patellofemoral pain syndrome: a randomised controlled clinical trial. Physiotherapy. 2013;99(2):126–31.

    Article  PubMed  Google Scholar 

  80. Kujala UM, Jaakkola LH, Koskinen SK, Taimela S, Hurme M, Nelimarkka O. Scoring of patellofemoral disorders. Arthroscopy. 1993;9(2):159–63.

    Article  PubMed  CAS  Google Scholar 

  81. Stephen JM, Urquhart DW, van Arkel RJ, Ball S, Jaggard MK, Lee JC, Church J. The use of sonographically guided botulinum toxin type a (Dysport) injections into the tensor fasciae latae for the treatment of lateral patellofemoral overload syndrome. Am J Sports Med. 2016;44(5):1195–202.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Stephen .

Editor information

Editors and Affiliations

34.1 Electronic Supplementary Materials

The pelvis is seen to tilt over the hip in a true anterior posterior pelvic tilt (MOV 15488 kb)

The rib cage is drawn down to the pelvis rather than the pelvis going up to the rib cage (MOV 15348 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stephen, J., Ephgrave, C., Ball, S., Church, S. (2020). Designing a Rehabilitation Programme for the Patient with Patellofemoral Pain. In: Dejour, D., Zaffagnini, S., Arendt, E., Sillanpää, P., Dirisamer, F. (eds) Patellofemoral Pain, Instability, and Arthritis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61097-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61097-8_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61096-1

  • Online ISBN: 978-3-662-61097-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics