Skip to main content

Entwicklung – Was gehört dazu?

  • Chapter
  • First Online:
Die Pharmaindustrie

Zusammenfassung

Hat die Wirkstoffsuche zur Auswahl eines erfolgversprechenden Wirkstoffkandidaten geführt, wird bereits in frühen Phasen der Entwicklung mit einem umfangreichen pharmakologischen und toxikologischen Testprogramm begonnen. Diesem liegen pharmakokinetische (Lehre der Wirkungen des Körpers auf ein Pharmakon), pharmakodynamische (Lehre von den Pharmawirkungen am Wirkort) und toxikologische (Lehre von den schädlichen Eigenschaften chemischer Substanzen) Erkenntnisse als Basis für die klinischen Untersuchungen zugrunde. Dieser Prozess ist ein interdisziplinärer und interprofessioneller Ansatz, der in Anbetracht des enormen Aufwands heute fast nur noch von großen Pharmafirmen erbracht werden kann. Es gibt jedoch durchaus Bestrebungen, durch Klinische Kompetenzzentren (KKS; s. u.) und Drittmittelförderungen der akademischen Medizin wieder verstärkt die Durchführung eigenständiger klinischer Arzneimittelstudien zu ermöglichen. Zum Entwicklungsteam gehören u. a. Wissenschaftler aus den Gebieten der analytischen und präparativen Chemie, der Molekularbiologie und Biochemie, der Pharmazie, der Pharmakologie und Toxikologie, der medizinischen Biometrie und der klinischen Pharmakologie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Weiterführende Literatur

  • Balkenhohl F, Bussche-Hünefeld C, Lansky A, Zechel A (1996) Kombinatorische Synthese von kleinen organischen Molekülen. Angew Chem 108:2436–2488

    Google Scholar 

  • Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044

    CAS  PubMed  Google Scholar 

  • Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I et al (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136:352–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bleicher KH, Böhm HJ, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378

    CAS  PubMed  Google Scholar 

  • Böhm HJ, Klebe G (1996) Was läßt sich aus der molekularen Erkennung in Protein-Ligand- Komplexen für das Design neuer Wirkstoffe lernen? Angew Chem 108:2750–2778

    Google Scholar 

  • Breinbauer R, Vetter IR, Waldmann H (2002) Von Proteindomänen zu Wirkstoffkandidaten − Naturstoffe als Leitstrukturen für das Design und die Synthese von Substanzbibliotheken. Angew Chem 116:3002–3015

    Google Scholar 

  • Brenk R, Naerum L, Grädler U, Gerber HD, Garcia GA, Reuter K, Stubbs MT, Klebe G (2003) Virtual screening for submicromolar leads of tRNA-guanine transglycosylase based on a new unexpected binding mode detected by crystal structure analysis. J Med Chem 46:1133–1143

    CAS  PubMed  Google Scholar 

  • Burbaum JJ (1998) Miniaturization technologies in HTS: how fast, how small, how soon? DDT 3:313–322

    Google Scholar 

  • Burger A (1991) Isosterism and bioisosterism in drug design. Fortschr Arzneimittelforsch 37:287–371

    CAS  Google Scholar 

  • Buss AD, Waigh RD (1995) Natural products as leads for new pharmaceuticals. In: Wolff M (Hrsg) Burger’s medicinal chemistry and drug discovery. Wiley, New York, S 983–1033

    Google Scholar 

  • Cahn A, Hepp P (1886) Das Antifebrin, ein neues Fiebermittel. Centralblatt für Klinische Medizin 7:561–564

    Google Scholar 

  • Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    CAS  PubMed  Google Scholar 

  • Dabbous O, Maru B, Jansen JP, Lorenzi M, Cloutier M, Guérin A, Pivneva I, Wu EQ, Arjunji R, Feltner D, Sproule DM (2019) Survival, motor function, and motor milestones: comparison of AVXS-101 relative to nusinersen for the treatment of infants with spinal muscular atrophy type 1. Adv Ther 36:1164–1176

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Stevens G (1986) Serendipity and structured research in drug discovery. Fortschr Arzneimittelforsch 30:189–203

    Google Scholar 

  • Dearden JC (1990) Molecular structure and drug transport. In: Ramsden CA (Hrsg) Quantitative drug design, Bd 4 von Hansch P, Sammes G, Taylor JB (Hrsg) Comprehensive medicinal chemistry. Pergamon Press, Oxford, S 375–411

    Google Scholar 

  • Estler CJ (1997) Arzneimittel im Alter. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Folkers G (Hrsg) (1995) Lock and key − a hundred years after. Emil Fischer commemorate symposium. Pharmaceutica Acta Helvetiae 69:175–269

    Google Scholar 

  • Gohlke H, Klebe G (2002) Ansätze zur Vorhersage und Beschreibung der Bindungsaffinität niedermolekularer Liganden an makromolekulare Rezeptoren. Angew Chem 114:2764–2798

    Google Scholar 

  • Goldstein DM, Gray NS, Zarrinkar PP (2008) High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov 7:391–397

    CAS  PubMed  Google Scholar 

  • Gonzalez JE, Oades K, Leychkis Y, Harootunian A, Negulescu PA (1999) Cell-based assays and instrumentation for screening ion-channel targets. DDT 4:431–439

    CAS  PubMed  Google Scholar 

  • Goodford PJ (1984) Drug design by the method of receptor fit. J Med Chem 27:557–564

    CAS  Google Scholar 

  • Greer J, Erickson JW, Baldwin JJ, Varney MD (1994) Application of the three-dimensional structures of protein target molecules in structure-based drug design. J Med Chem 37:1035–1054

    CAS  PubMed  Google Scholar 

  • Grüneberg S, Stubbs MT, Klebe G (2002) Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. J Med Chem 45:3588–3602

    PubMed  Google Scholar 

  • Günther J, Bergner A, Hendlich M, Klebe G (2003) Utilising structural knowledge in drug design strategies: applications using Relibase. J Mol Biol 326:621–636

    PubMed  Google Scholar 

  • Gurrath M (2001) Der humane AT1-Rezeptor. Pharm unserer Zeit 4:288–295

    Google Scholar 

  • Hansch C, Leo A (1995) Exploring QSAR. fundamentals and applications in chemistry and biology, Bd 1. American Chemical Society, Washington

    Google Scholar 

  • Hauser AS, Attwood M, Rask-Andersen M, Schiöth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21st century. Curr Op Chem Biol 4:445–451

    CAS  Google Scholar 

  • Hughes WH (1974) Fleming and Penicillin. Priority Press Ltd., Hove

    Google Scholar 

  • Hylands PJ, Nisbet LJ (1991) The search for molecular diversity (I): natural Products. Ann Rep Med Chem 26:259–269

    CAS  Google Scholar 

  • Jenwitheesuk E, Horst JA, Rivas KL, Van Voorhis WC, Samudrala R (2007) Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol Sci 29:62–71

    Google Scholar 

  • Klebe G (2001) Wirkstoffdesign bei der Entwicklung substratähnlicher HIV-Protease-Hemmstoffe. Pharm. i. u. Zeit 3:194–201

    Google Scholar 

  • Klebe G (2009) Wirkstoffdesign. Spektrum Akad Verlag, Heidelberg

    Google Scholar 

  • Kubinyi H (1995) Lock and key in the real world: concluding remarks. Pharmac Acta Helv 69:259–269

    CAS  Google Scholar 

  • Kubinyi H (1994) Der Schlüssel zum Schloss. II. Hansch-Analyse, 3D-QSAR und De novo-Design. Pharmazie i. u. Zeit 23:281–290

    CAS  Google Scholar 

  • Kubinyi H (1993) QSAR: Hansch Analysis and Related Approaches. VCH, Weinheim

    Google Scholar 

  • Kuntz ID (1992) Structure-based strategies for drug design and discovery. Science 257:1078–1082

    CAS  PubMed  Google Scholar 

  • Kutter E (1978) Arzneimittelentwicklung. Grundlagen – Strategien – Perspektiven. Thieme, Stuttgart

    Google Scholar 

  • Lichtenthaler FW (1994) Hundert Jahre Schlüssel- Schloss-Prinzip: Was führte Emil Fischer zu dieser Analogie? Angew Chem 106:2456–2467

    CAS  Google Scholar 

  • Link A, Müller CE (2016) G-Protein-gekoppelte Rezeptoren: intrazelluläre Megaplexe und funktionell selektive Wirkstoffe. Angew Chem 128:16194–16196

    Google Scholar 

  • Lipinski CA (1986) Bioisosterism in drug design. Ann Rep Med Chem 21:283–291

    CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  • Lipnick RL (1990) Selectivity. In: Kennewell PD (Hrsg) General principles, Bd 1 von Hansch C, Sammes PG, Taylor JB (Hrsg) Comprehensive medicinal chemistry. Pergamon Press, Oxford, S 239–247

    Google Scholar 

  • Mager PP (1987) Zur Entwicklung von bioaktiven Leistrukturen. Versuch einer Systematik. Pharmazie i. u. Zeit 16:97–121

    CAS  Google Scholar 

  • Murciano-Goroff YR, Taylor BS, Hyman DM, Schram AM (2020) Toward a more precise future for oncology. Cancer Cell 37:431–442

    CAS  PubMed  Google Scholar 

  • Ochsenreiter S, Lordick F (2016) Neue Konzepte für klinische Studien on der Onkologie. FORUM 31:221–225

    Google Scholar 

  • Pallmann P, Bedding AW, Choodari-Oskooei B, Dimairo M, Flight L, Hampson LV, Holmes J, Mander AP, Odondi L, Sydes MR, Villar S, Wason JMS, Weir CJ, Wheeler GM, Yap C, Jaki T (2018) Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med 16:29

    PubMed  PubMed Central  Google Scholar 

  • Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C, Meyer B, Oschkinat H, Peng J, Schwalbe H, Siegal G (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar KJ, Francis PA, Woerner J, Chang CH, Garber SS, Anton ED, Bacheler LT (1997) Cyclic urea amides: HIV-1-protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV. J Med Chem 40:181–191

    Google Scholar 

  • Reinhardt CA (Hrsg) (1994) Alternatives to animal testing. VCH, Weinheim

    Google Scholar 

  • Roberts RM (1989) Serendipity. Accidental discoveries in science. Wiley, New York

    Google Scholar 

  • Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 98:8554–8559

    CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    CAS  PubMed  Google Scholar 

  • Schwalbe H, Wess G (2002) Dissecting G-protein-coupled receptors: structure, function, and ligand Interactions. ChemBioChem 2:915–1016

    Google Scholar 

  • Sneader W (1990) Chronology of Drug Introductions. In: Hansch C, Sammes PG, Taylor JB (Hrsg) Comprehensive medicinal chemistry. Pergamon Press, Oxford, S 7–80

    Google Scholar 

  • Spezial-Heft: Proteomics and Drug Development. Biospektrum, September 2002

    Google Scholar 

  • Stubbs MT (2006) Protein ligand interactions studied by X-ray. In: Ganten D, Ruckpaul K (Hrsg) Encyclopedic reference of genomics and proteomics in molecular medicine. Springer, Berlin

    Google Scholar 

  • Stryer L (2003) Biochemie, 5. Aufl. Spektrum Akad. Verlag, Heidelberg, S 236–238

    Google Scholar 

  • Sundberg SA (2000) High-throughput and ultrahigh-throughput screening: solution- and cell-based approaches. Curr Op Biotech 11:47–53

    CAS  Google Scholar 

  • Tempesta MS, King SR (1994) Ethnobotany as a source for new drugs. Ann Rep Med Chem 29:325–330

    CAS  Google Scholar 

  • Thornber CW (1979) Isosterism and molecular modification in drug design. Chem Soc Rev 8:563–580

    CAS  Google Scholar 

  • Todd MJ, Luque I, Velázquez-Campoy A, Freire E (2000) Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84 V active site resistant mutant. Biochemistry 39:11876–11883

    CAS  PubMed  Google Scholar 

  • Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Aigner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aigner, A. (2020). Entwicklung – Was gehört dazu? . In: Fischer, D., Breitenbach, J. (eds) Die Pharmaindustrie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61035-0_3

Download citation

Publish with us

Policies and ethics