Skip to main content

Technische Prinzipien

  • Chapter
  • First Online:
Refraktive Chirurgie

Zusammenfassung

Beim Laser („light amplification by stimulated emission of radiation“) handelt es sich um eine Lichtquelle, die aufgrund der guten Fokussierbarkeit und der Möglichkeit, sehr kurze Pulse zu erzeugen, nicht nur hohe Leistungen, sondern auch extrem hohe Intensitäten (Leistungsdichten) generieren kann (Tab. 9.1). Je nach Laserparameter können unterschiedliche Arten von Wechselwirkungen auftreten und das Gewebe bei der Bestrahlung gezielt verändern (Abb. 9.1). Zu den Wechselwirkungsprozessen gehören: photochemische Wechselwirkungen, Koagulation und Vaporisation sowie die Photoablation und Photodisruption.

Sowohl die Photoablation als auch die Photodisruption spielen in der refraktiven Chirurgie eine entscheidende Rolle.

Anfang der 1980er-Jahre beschrieben Srinivasan und Mitarbeiter erstmalig ein Verfahren zur Bearbeitung organischer Polymere mit Hilfe von ultravioletter Excimerlaserstrahlung. Kennzeichnend für den neuartigen Prozess der Materialabtragung war die Verwendung von gepulster, energiereicher UV-Strahlung. Aufgrund der geringen Eindringtiefe der UV-Strahlung in die zu bearbeitenden Materialproben war es möglich, Strukturen im Sub-Mikrometerbereich in die organische Matrix zu ätzen. Srinivasan bezeichnete dieses Phänomen als „ablative Photodekomposition“. Den Abtragprozess erklärte man sich durch ein direktes Aufbrechen der Molekülbindungen der organischen Polymere, das durch die Absorption der energiereichen UV-Photonen hervorgerufen wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Srinivasan R, Mayne-Banton V (1982) Self-developing photoetching of poly(ethylene terephthalate) films by far-ultraviolet excimer laser radiation. Appl Phys Lett 41(6):576–578

    Article  CAS  Google Scholar 

  • Srinivasan R, Leigh WJ (1982) Ablative photodecomposition: action on far-ultraviolet (193 nm) laser radiation on poly(ethylene terephthalate) films. J Am Chem Soc 104:6784–6785

    Article  CAS  Google Scholar 

  • Wolbarsht M (1984) Laser surgery: CO2 or HF. IEEE J Quantum Electron 20(12):1427–1432

    Article  Google Scholar 

  • Srinivasan R, Braren B, Dreyfus RW (1987) Ultraviolet laser ablation of polyimide films. J Appl Phys 61(1):372–376

    Article  CAS  Google Scholar 

  • Srinivasan R (1990) Ablation of polymers and tissue by ultraviolet lasers. Proc SPIE 1064:77–82

    Article  Google Scholar 

  • Walsh JT, Flotte TJ, Deutsch TF (1989) Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 9:314–326

    Article  PubMed  Google Scholar 

  • Zweig AD, Frenz M, Romano V, Weber HP (1988) A comparative study of laser tissue interaction at 2.94 μm and 10.6 μm. Appl Phys B 47:259–265

    Article  Google Scholar 

  • Zweig AD (1991) A thermo-mechanical model for laser ablation. J Appl Phys 70(3):1684–1691

    Article  Google Scholar 

  • Boulnois JL (1986) Photophysical processes in recent medical laser developments: a review. Laser Med Sci 1:47–66

    Article  Google Scholar 

  • Oraevsky AA, Jacques SL, Pettit GH, Saidi IS, Tittel FK, Henry PD (1992) XeCl laser ablation of atherosclerotic aorta: optical properties and energy pathways. Lasers Surg Med 12:585–597

    Article  CAS  PubMed  Google Scholar 

  • Phillips D, Roberts JA (Hrsg) (1982) Photophysics of synthetic polymers. The Royal Institution (Science Reviews)

    Google Scholar 

  • Basting D, Marowsky G (2005) Excimer laser technology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Delmdahl R (2010) The excimer laser: precision engineering. Nat Photonics 4:286

    Article  CAS  Google Scholar 

  • Shraiki M, Arba-Mosquera S (2011) Simulation of the impact of refractive surgery ablative laser pulses with a flying-spot laser beam on intrasurgery corneal temperature. Investig Ophthalmol Vis Sci 52(6):3713

    Article  Google Scholar 

  • Iseli HP, Mrochen M, Hafezi F, Seller T (2004) Clinical photoablation with a 500-Hz scanning spot excimer laser. J Refract Surg 20(6):831

    Article  PubMed  Google Scholar 

  • Birngruber R, Puliafito CA, Gawande A, Lin WZ, Schoenlein RW, Fujimoto JG (1987) Femtosecond laser tissue interactions – retinal injury studies. IEEE J Quantum Electron 23(10):1836–1844

    Article  Google Scholar 

  • Kautek W, Mitterer S, Krüger J, Husinsky W, Grabner G (1994) Femtosecond-pulse laser ablation of human corneas. Appl Phys A 58:513–518

    Article  Google Scholar 

  • Chung SH, Mazur E (2009) Surgical applications of femtosecond lasers. J Biophotonics 2(10):557–572

    Article  PubMed  Google Scholar 

  • Siegman AE (1986) Lasers. University science books. Stanford University

    Google Scholar 

  • Niemz M (2004) Laser tissue interactions: fundamentals and applications, 3. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vogel A, Noak J, Nahen K, Theisen D, Busch S, Parlitz U et al (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl Phys B 68(2):271–280

    Article  CAS  Google Scholar 

  • Vogel A, Noak J, Hüttmann G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissue. Appl Phys B 81(8):1015–1047

    Article  CAS  Google Scholar 

  • Mrochen M, Donges A, Korn G (2006) Femtosecond laser for refractive corneal surgery: foundations, mode of action and clinical applications. Ophthalmologe 103(12):1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Le Harzic R, Bückle R, Wüllner C (2005) Laser safety aspects for refractive surgery with femtosecond pulses. Med Laser Appl 20:233–238

    Article  Google Scholar 

  • Bauch AS, Taafe M, Kohnen T (2009) LASIK-Behandlung bei steilen und flachen Hornhäuten mit dem Intralase FS60. Klin Monbl Augenheilkd 226(S 01):V77

    Article  Google Scholar 

  • Kohnen T, Klaproth OK, Derhartunian V, Kook D (2010) Results of 308 consecutive femtosecond laser cuts for LASIK. Ophthalmologe 107(5):439–445

    Article  CAS  PubMed  Google Scholar 

  • Kohnen T, Schwarz L, Remy M, Shajari M (2016) Short-term complications of femtosecond laser-assisted laser in situ keratomileusis cuts: Review of 1210 consecutive cases. J Cataract Refract Surg 42(12):1797–1803

    Article  PubMed  Google Scholar 

  • von Jagow B, Kohnen T (2009) Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J Cataract Refract Surg 35(1):35–41

    Article  Google Scholar 

  • Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF (2008) Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman’s keratomileusis? J Refract Surg 24(1):S90–S96

    PubMed  Google Scholar 

  • Dawson DG, Kramer TR, Grossniklaus HE, Waring 3rd GO, Edelhauser HF (2005) Histologic, ultrastructural, and immunofluorescent evaluation of human laser-assisted in situ keratomileusis corneal wounds. Arch Ophthalmol 123(6):741–756

    Article  PubMed  Google Scholar 

  • Knorz MC, Vossmerbaeumer U (2008) Comparison of flap adhesion strength using the Amadeus microkeratome and the IntraLase iFS femtosecond laser in rabbits. J Refract Surg 24(9):875–878

    Article  PubMed  Google Scholar 

  • Kook D, Derhartunian V, Bug R, Kohnen T (2009) Top-hat shaped corneal trephination for penetrating keratoplasty using the femtosecond laser: a histomorphological study. Cornea 28(7):795–800

    Article  PubMed  Google Scholar 

  • Wade M, Muniz Castro H, Garg S, Kedhar S, Aggarwal S, Shumway C, Farid M (2019) Long-term results of femtosecond laser-enabled keratoplasty with zig-zag trephination. Cornea 38(1):42–49

    Article  PubMed  Google Scholar 

  • Gaster RN, Dumitrascu O, Rabinowitz YS (2012) Penetrating keratoplasty using femtosecond laser-enabled keratoplasty with zig-zag incisions versus a mechanical trephine in patients with keratoconus. Br J Ophthalmol 96(9):1195–1199

    Article  PubMed  Google Scholar 

  • Cheng YY, Schouten JS, Tahzib NG, Wijdh RJ, Pels E, van Cleynenbreugel H et al (2009) Efficacy and safety of femtosecond laserassisted corneal endothelial keratoplasty: a randomized multicenter clinical trial. Transplantation 88(11):1294–1302

    Article  PubMed  Google Scholar 

  • Einan-Lifshitz A, Sorkin N, Boutin, Showail M, Borovik A, Alobthani M, Chan CC, Rootman DS (2017) Comparison of femtosecond laser-enabled descemetorhexis and manual descemetorhexis in Descemet membrane endothelial keratoplasty. Cornea 36(7):767–770

    Article  PubMed  Google Scholar 

  • Sorkin N, Mednick Z, Einan-Lifshitz A, Trinh T, Santaella G, Telli A, Chan CC, Rootman DS (2019) Three-year outcome comparison between femtosecond laser-assisted and manual Descemet membrane endothelial keratoplasty. Cornea 38(7):812–816

    Article  PubMed  Google Scholar 

  • Kook D, Bühren J, Klaproth OK, Bauch AS, Derhartunian V, Kohnen T (2011) Astigmatic keratotomy with the femtosecond laser: correction of high astigmatisms after keratoplasty. Ophthalmologe 108(2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Pinero DP, Alio JL, El Kady B, Coskunseven E, Morbelli H, Uceda-Montanes A et al (2009) Refractive and aberrometric outcomes of intracorneal ring segments for keratoconus: mechanical versus femtosecond-assisted procedures. Ophthalmology 116(9):1675–1687

    Article  PubMed  Google Scholar 

  • Ertan A, Karacal H (2008) Factors influencing flap and INTACS decentration after femtosecond laser application in normal and keratoconic eyes. J Refract Surg 24(8):797–801

    Article  PubMed  Google Scholar 

  • Struckmeier AK, Hamon L, Flockerzi E, Munteanu C, Seitz B, Daas L (2022) Femtosecond laser and mechanical dissection for ICRS and Myoring implantation: a meta-analysis. Cornea 41(4):518–537

    Article  PubMed  Google Scholar 

  • Holzer MP, Mannsfeld A, Ehmer A, Auffarth GU (2009) Early outcomes of INTRACOR femtosecond laser treatment for presbyopia. J Refract Surg 25(10):855–861

    Article  PubMed  Google Scholar 

  • Khoramnia R, Fitting A, Rabsilber TM, Thomas BC, Auffarth GU, Holzer MP (2015) Intrastromal femtosecond laser surgical compensation of presbyopia with six intrastromal ring cuts: 3-year results. Br J Ophthalmol 99(2):170–176

    Article  PubMed  Google Scholar 

  • Mai ELC, Lian L, Chang DC (2016) Assessment of contrast sensitivity loss after intrastromal femtosecond laser and LASIK procedure. Int J Ophthalmol 9(12):1798–1801

    PubMed  PubMed Central  Google Scholar 

  • Blum M, Kunert K, Schroder M, Sekundo W (2010) Femtosecond lenticule extraction for the correction of myopia: preliminary 6-month results. Graefes Arch Clin Exp Ophthalmol 248(7):1019–1027

    Article  PubMed  Google Scholar 

  • Nagy ZZ, Takacs A, Filkorn T et al (2009) Initial clinical evaluation of intraocular femtosecond laser in cataract surgery. J Refract Surg 25:1053–1060

    Article  PubMed  Google Scholar 

  • Dick HB, Schultz T (2017) Neue Entwicklungen in der Kataraktchirurgie. Klin Monbl Augenheilkd 234:979–985

    CAS  PubMed  Google Scholar 

  • Dick HB, Schultz T (2017) A review of laser-assisted versus traditional phacoemulsification cataract surgery. Ophthalmol Ther 6:7–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Dick HB, Gerste RD (2014) Plea for femtosecond laser pre-treatment and cataract surgery in the same room. J Cataract Refract Surg 40:499–500

    Article  PubMed  Google Scholar 

  • Dick HB (2018) The basics of femtosecond laser cataract surgery. In: Dick HB, Gerste RD, Schultz T (Hrsg) Femtosecond laser surgery in ophthalmology. Thieme, New York, S 118–122

    Google Scholar 

  • Menapace RM, Dick HD (2014) Femtosekundenlaser in der Kataraktchirurgie. Eine kritische Betrachtung. Ophthalmologe 111:624–637

    Article  CAS  PubMed  Google Scholar 

  • Roberts TV (2018) Femtosecond laser cataract surgery: setting and infrastructure. In: Dick HB, Gerste RD, Schultz T (Hrsg) Femtosecond Laser Surgery in Ophthalmology. Thieme, New York, S 123–128

    Google Scholar 

  • Cherny M (2018) Crucial steps I: capsulotomy. In: Dick HB, Gerste RD, Schultz T (Hrsg) Femtosecond laser surgery in ophthalmology. Thieme, New York, S 129–141

    Google Scholar 

  • Grewal DS, Schultz T, Basti S, Dick HB (2016) Femtosecond laser assisted cataract surgery – current status and future directions. Surv Ophthalmol 6:103–131

    Article  Google Scholar 

  • Noristani R, Schultz T, Dick HB (2018) Crucial steps III. corneal incisions, main and side. In: Dick HB, Gerste RD, Schultz T (Hrsg) Femtosecond laser surgery in ophthalmology. Thieme, New York, S 146–153

    Google Scholar 

  • Abell RG, Darian-Smith E, Kan JB et al (2015) Femtosecond laser-assisted cataract surgery versus standard phacoemulsification cataract surgery: outcomes and safety in more than 4000 cases at a single center. J Cataract Refract Surg 41:47–52

    Article  PubMed  Google Scholar 

  • Auffarth G (2018) Pitfalls: femtosecond laser-induced complications. In: Dick HB, Gerste RD, Schultz T (Hrsg) Femtosecond laser surgery in ophthalmology. Thieme, New York, S 191–197

    Google Scholar 

  • Conrad-Hengerer I, Al Sheikh M, Hengerer FH, Schultz T, Dick HB (2015) Comparison of visual recovery and refractive stability between femtosecond laser-assisted cataract surgery and standard phacoemulsification: six-month follow-up. J Cataract Refract Surg 41:1356–1364

    Article  PubMed  Google Scholar 

  • Day AC, Gore DM, Bunce C et al (2016) Laser-assisted cataract surgery versus standard ultrasound phacoemulsification cataract surgery. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010735.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  • Dick HB, Schultz T (2013) On the way to zero phako. J Cataract Refract Surg 39:1442–1444

    PubMed  Google Scholar 

  • Scott WJ, Tauber S, Gessler JA, Ohly JG, Owsiak RR, Eck CD (2016) Comparison of vitreous loss rates between manual phacoemulsification and femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 42:1003–1008

    Article  PubMed  Google Scholar 

  • Conrad-Hengerer I, Hengerer FH, Juburi MA et al (2014) Femtosecond laser-induced macular changes and anterior segment inflammation in cataract surgery. J Refract Surg 30:222–226

    Article  PubMed  Google Scholar 

  • Schultz T, Joachim SC, Kuehn M, Dick HB (2013) Changes in prostaglandin levels in patients undergoing femtosecond laser-assisted cataract surgery. J Refract Surg 29:742–747

    Article  PubMed  Google Scholar 

  • Conrad-Hengerer I, Al Juburi M, Schultz T, Hengerer FH, Dick HB (2013) Corneal endothelial cell loss and corneal thickness in conventional compared with femtosecond laser-assisted cataract surgery: three-month follow-up. J Cataract Refract Surg 39:1307–1313

    Article  PubMed  Google Scholar 

  • Conrad-Hengerer I, Hengerer FH, Joachim SC et al (2014) Femtosecond laser-assisted cataract surgery in intumescent white cataracts. J Cataract Refract Surg 40:44–50

    Article  PubMed  Google Scholar 

  • Dick HB, Schultz T, Gerste RD (2019) Lens capsule-related complications of femtosecond laser-assisted capsulotomy versus manual capsulorhexis for white cataracts. J Cataract Refract Surg 45:1214–1215

    Article  PubMed  Google Scholar 

  • Schultz T, Dick HB (2014) Laser-assisted mini-capsulotomy: a new technique for intumescent white cataracts. J Refract Surg 30:742–745

    Article  PubMed  Google Scholar 

  • Schultz T, Ezeanosike E, Dick HB (2013) Femtosecond laser-assisted cataract surgery in pediatric Marfan syndrome. J Refract Surg 29:1–3

    Google Scholar 

  • Dick HB, Schelenz D, Schultz T (2015) Femtosecond laser-assisted pediatric cataract surgery: Bochum formula. J Cataract Refract Surg 41:821–826

    Article  PubMed  Google Scholar 

  • Dick HB, Schultz T (2013) Femtosecond laser-assisted cataract surgery in infants. J Cataract Refract Surg 39:665–668

    Article  PubMed  Google Scholar 

  • Gerste RD, Schultz T, Dick HB (2018) Pediatric cataract surgery with the femtosecond laser. In: Dick HB, Schultz T, Gerste RD (Hrsg) Femtosecond laser surgery in ophthalmology. Thieme, New York

    Google Scholar 

  • Dick HB, Schultz T (2014) Primary posterior laser-assisted capsulotomy. J Refract Surg 30:128–133

    Article  PubMed  Google Scholar 

  • Dick HB, Schultz T, Gerste RD (2018) Posterior capsulotomy, bag-in-the-lens and evolving techniques. In: Dick HB, Schultz T, Gerste RD (Hrsg) Femtosecond laser surgery in ophthalmology. Thieme, New York

    Google Scholar 

  • Schojai M, Schultz T, Haeussler-Sinangin Y, Boecker J, Dick HB (2017) Safety of femtosecond laser-ssisted primary posterior capsulotomy immediately after cataract surgery. J Cataract Refract Surg 43:1171–1176

    Article  PubMed  Google Scholar 

  • Tassignon MJ, De Groot V, Smets RM et al (1996) Secondary closure of posterior continuous curvilinear capsulorhexis. J Cataract Refract Surg 22:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Hooshmand J, Vote BJ (2017) Femtosecond laser-assisted cataract surgery, technology, outcome, future directions and modern applications. Asia Pac J Ophthalmol 6:393–400

    Google Scholar 

  • Manning S, Barry P, Henry Y et al (2016) Femtosecond laser-assisted cataract surgery versus standard phacoemulsification cataract surgery: study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J Cataract Refract Surg 42:1779–1790

    Article  PubMed  Google Scholar 

  • Munnerlyn CR, Koons SJ, Marshall J (1988) Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 14(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Seiler T, Genth U, Holschbach A, Derse M (1993) Aspheric photorefractive keratectomy with excimer laser. Refract Corneal Surg 9(3):166–172

    Article  CAS  PubMed  Google Scholar 

  • Mierdel P, Krinke HE, Wiegand W, Kaemmerer M, Seiler T (1997) Measuring device for determining monochromatic aberration of the human eye. Ophthalmologe 94(6):441–445

    Article  CAS  PubMed  Google Scholar 

  • Oshika T, Klyce SD, Applegate RA, Howland HC, El Danasoury MA (1999) Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 127(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Kohnen T, Mahmoud K, Bühren J (2005) Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK. Ophthalmology 112(10):1692

    Article  PubMed  Google Scholar 

  • Applegate RA, Marsack JD, Ramos R, Sarver EJ (2003) Interaction between aberrations to improve or reduce visual performance. J Cataract Refract Surg 29(8):1487–1495

    Article  PubMed  Google Scholar 

  • Smadja D, Santhiago MR, Mello GR, Touboul D, Mrochen M, Krueger RR (2013) Corneal higher order aberrations after myopic wavefront-optimized ablation. J Refract Surg 29(1):42–49

    Article  PubMed  Google Scholar 

  • Mrochen M, Donitzky C, Wüllner C, Löffler J (2004) Wavefront-optimized ablation profiles: theoretical background. J Cataract Refract Surg 30(4):775–785

    Article  PubMed  Google Scholar 

  • El Awady HE, Ghanem AA, Saleh SM (2011) Wavefront-optimized ablation versus topography-guided customized ablation in myopic LASIK: comparative study of higher order aberrations. Ophthalmic Surg Lasers Imaging Retina 42(4):314–320

    Article  Google Scholar 

  • Stonecipher KG, Kezirian GM (2008) Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: three-month results of a prospective FDA trial. J Refract Surg 24(4):S424–S430

    PubMed  Google Scholar 

  • Broderick KM, Sia RK, Ryan DS, Stutzman RD, Mines MJ, Frazier TC et al (2016) Wavefront-optimized surface retreatments of refractive error following previous laser refractive surgery: a retrospective study. Eye Vis 3(1):3

    Article  Google Scholar 

  • Optics of the Human Eye, 1. Aufl. https://www.elsevier.com/books/optics-of-the-human-eye/atchison/978-0-7506-3775-6. Zugegriffen: 28. Aug. 2022

  • Manns F, Ho A, Parel JM, Culbertson W (2002) Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration. J Cataract Refract Surg 28(5):766–774

    Article  PubMed  Google Scholar 

  • Villa C, Jiménez JR, Anera RG, Gutiérrez R, Hita E (2009) Visual performance after LASIK for a Q-optimized and a standard ablation algorithm. Appl Opt 48(30):5741–5747

    Article  PubMed  Google Scholar 

  • Koller T, Iseli HP, Hafezi F, Mrochen M, Seiler T (2006) Q-factor customized ablation profile for the correction of myopic astigmatism. J Cataract Refract Surg 32(4):584–589

    Article  PubMed  Google Scholar 

  • Knorz MC, Jendritza B (2000) Topographically-guided laser in situ keratomileusis to treat corneal irregularities. Ophthalmology 107(6):1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulos AJ (2005) Topography-guided custom retreatments in 27 symptomatic eyes. J Refract Surg 21(5):S513–S518

    Article  PubMed  Google Scholar 

  • Kymionis GD, Panagopoulou SI, Aslanides IM, Plainis S, Astyrakakis N, Pallikaris IG (2004) Topographically supported customized ablation for the management of decentered laser in situ keratomileusis. Am J Ophthalmol 137(5):806–811

    Article  PubMed  Google Scholar 

  • Gibralter R, Trokel SL (1994) Correction of irregular astigmatism with the excimer laser. Ophthalmology 101(7):1310–1314 (discussion 1314–1315)

    Article  CAS  PubMed  Google Scholar 

  • Hafezi F, Jankov M, Mrochen M, Wüllner C, Seiler T (2006) Customized ablation algorithm for the treatment of steep central islands after refractive laser surgery. J Cataract Refract Surg 32(5):717–721

    Article  PubMed  Google Scholar 

  • Hafezi F, Mrochen M, Seiler T (2005) Two-step procedure to enlarge small optical zones after photorefractive keratectomy for high myopia. J Cataract Refract Surg 31(12):2254–2256

    Article  PubMed  Google Scholar 

  • Cheng SM, Tu RX, Li X, Zhang JS, Tian Z, Zha ZW et al (2021) Topography-guided versus wavefront-optimized LASIK for myopia with and without astigmatism: a meta-analysis. J Refract Surg 37(10):707–714

    Article  PubMed  Google Scholar 

  • Kohnen T, Bühren J (2004) Derzeitiger Stand der wellenfrontgeführten Hornhautchirurgie zur Korrektur von Refraktionsfehlern. Ophthalmologe 101(6):631–648

    Article  CAS  PubMed  Google Scholar 

  • Mrochen M, Krueger RR, Bueeler M, Seiler T (2002) Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation. J Refract Surg 18(4):418–429

    Article  PubMed  Google Scholar 

  • Bühren J, Kohnen T (2006) Factors affecting the change in lower-order and higher-order aberrations after wavefront-guided laser in situ keratomileusis for myopia with the Zyoptix 3.1 system. J Cataract Refract Surg 32(7):1166–1174

    Article  PubMed  Google Scholar 

  • Padmanabhan P, Mrochen M, Basuthkar S, Viswanathan D, Joseph R (2008) Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study. J Cataract Refract Surg 34(3):389–397

    Article  PubMed  Google Scholar 

  • Seiler TG, Wegner A, Senfft T, Seiler T (2019) Dissatisfaction after trifocal IOL implantation and its improvement by selective wavefront-guided LASIK. J Refract Surg 35(6):346–352

    Article  PubMed  Google Scholar 

  • Mrochen M, Bueeler M, Donitzky C, Seiler T (2008) Optical ray tracing for the calculation of optimized corneal ablation profiles in refractive treatment planning. J Refract Surg 24(4):S446–S451

    PubMed  Google Scholar 

  • Cummings AB, Kelly GE (2013) Optical ray tracing-guided myopic laser in situ keratomileusis: 1-year clinical outcomes. Clin Ophthalmol 7:1181–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanellopoulos AJ (2020) Initial outcomes with customized myopic LASIK, guided by automated Ray tracing optimization: a novel technique. Clin Ophthalmol 14:3955–3963

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohnen T, Böhm M, Herzog M, Hemkeppler E, Petermann K, Lwowski C (2020) Near visual acuity and patient-reported outcomes in presbyopic patients after bilateral multifocal aspheric laser in situ keratomileusis excimer laser surgery. J Cataract Refract Surg 46(7):944–952

    Article  PubMed  Google Scholar 

  • Luger MHA, Ewering T, Arba-Mosquera S (2014) Nonwavefront-guided presby reversal treatment targeting a monofocal cornea after bi-aspheric ablation profile in a patient intolerant to multifocality. J Refract Surg 30(3):214–216

    Article  PubMed  Google Scholar 

  • Shetty R, Brar S, Sharma M, Dadachanji Z, Lalgudi V (2020) PresbyLASIK: a review of PresbyMAX, supracor, and laser blended vision: principles, planning, and outcomes. Indian J Ophthalmol 68(12):2723

    Article  PubMed  PubMed Central  Google Scholar 

  • Pande M, Hillman JS (1993) Optical zone centration in keratorefractive surgery. Entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center? Ophthalmology 100(8):1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Büeler M (1974) Optical zone and single pulse centration in corneal refractive laser surgery. Dissertation, Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  • Uozato H, Guyton DL (1987) Centering corneal surgical procedures. Am J Ophthalmol 103(3 Pt 1):264–275 (Erratum in: Am J Ophthalmol 103(6):852)

    Article  CAS  PubMed  Google Scholar 

  • Fay AM, Trokel SL, Myers JA (1992) Pupil diameter and the principal ray. J Cataract Refract Surg 18(4):348–351

    Article  CAS  PubMed  Google Scholar 

  • Chang JS, Law AK, Ng JC, Chan VK (2016) Comparison of refractive and visual outcomes with centration points 80 % and 100 % from pupil center toward the coaxially sighted corneal light reflex. J Cataract Refract Surg 42(3):412–419

    Article  PubMed  Google Scholar 

  • Arba-Mosquera S, de Ortueta D (2016) LASIK for hyperopia using an aberration-neutral profile with an asymmetric offset centration. J Refract Surg 32(2):78–83

    Article  PubMed  Google Scholar 

  • Lee H, Roberts CJ, Arba-Mosquera S, Kang DSY, Reinstein DZ, Kim TI (2018) Relationship between decentration and induced corneal higher-order aberrations. Investig Ophthalmol Vis Sci 59(6):2316–2324

    Article  Google Scholar 

  • Chan TCY, Wan KH, Kang DSY, Tso THK, Cheng GPM, Wang Y (2019) Effect of corneal curvature on optical zone decentration and its impact onastigmatism and higher-order aberrations in SMILE and LASIK. Graefes Arch Clin Exp Ophthalmol 257(1):233–240

    Article  PubMed  Google Scholar 

  • Kanellopoulos AJ (2017) Topography-guided LASIK versus small incision lenticule extraction (SMILE) for myopia and myopic astigmatism: a randomized, prospective, contralateral eye study. J Refract Surg 33(5):306–312

    Article  PubMed  Google Scholar 

  • Nepomuceno RL, Boxer BS, Wachler KJM, Scruggs R, Sato M (2004) Laser in situ keratomileusis for hyperopia with the LADAR-Vision 4000 with centration on the coaxially sighted corneal light reflex. J Cataract Refract Surg 30(6):1281–1286

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kohnen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohnen, T. et al. (2023). Technische Prinzipien. In: Kohnen, T. (eds) Refraktive Chirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60946-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60946-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60945-3

  • Online ISBN: 978-3-662-60946-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics