Skip to main content

Diagnostik in der refraktiven Chirurgie

  • Chapter
  • First Online:
Refraktive Chirurgie

Zusammenfassung

Sowohl bei der Voruntersuchung als auch bei den postoperativen Kontrollen kommt eine Reihe zum Teil hochspezialisierter Untersuchungstechniken zum Einsatz, deren Anwendung und Interpretation beherrscht werden müssen. In diesem Kapitel werden die in der refraktiven Chirurgie gebräuchlichen Untersuchungsmethoden dargestellt.

Die Voruntersuchung stellt das Fundament für die weitere Behandlung dar, denn hier werden die Weichen gestellt: Basierend auf Anamnese und Befund ist zu entscheiden, ob der Patient für eine Behandlung geeignet ist und welches Verfahren für den Patienten optimal ist. In der Voruntersuchung werden weiterhin Daten erhoben (z. B. Refraktion, Wellenfrontfehler, Topo-/Tomographie der Hornhaut, Pupillendurchmesser, Hornhautdicke), auf denen die weitere Behandlung basiert. Es kann daher nicht oft genug betont werden, dass die Voruntersuchung für das Ergebnis des Eingriffes von außerordentlicher Wichtigkeit ist und Nachlässigkeiten oder Ungenauigkeiten bei der Voruntersuchung weitreichende Konsequenzen haben können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Cobo-Soriano R, Beltran J, Baviera J (2006) LASIK outcomes in patients with underlying systemic contraindications: a preliminary study. Ophthalmology 113:1118 e1–8

    Article  PubMed  Google Scholar 

  • Kohnen T, Bühren J, Baumeister M (2001) Confocal microscopic imaging of reticular folds in a laser in situ keratomileusis flap. J Refract Surg 17:689–691

    Article  CAS  PubMed  Google Scholar 

  • Bühren J, Kohnen T (2003) Stromal haze after laser in situ keratomileusis: clinical and confocal microscopy findings. J Cataract Refract Surg 29:1718–1726

    Article  PubMed  Google Scholar 

  • Møller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV (2000) Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study. Ophthalmology 107:1235–1245

    Article  PubMed  Google Scholar 

  • Bühren J, Kohnen T (2006) A standardized drawing scheme to document corneal changes following refractive corneal surgery. J Refract Surg 22:166–171

    Article  PubMed  Google Scholar 

  • Linebarger EJ, Hardten DR, Lindstrom RL (2000) Diffuse lamellar keratitis: diagnosis and management. J Cataract Refract Surg 26:1072–1077

    Article  CAS  PubMed  Google Scholar 

  • Chan TC, Biswas S, Yu M, Jhanji V (2015) Longitudinal evaluation of cornea with swept-source optical coherence tomography and Scheimpflug imaging before and after Lasik. Medicine 94(30):e1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Huang J, Wen D et al (2012) Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry. Acta Ophthalmol 90:449–455

    Article  PubMed  Google Scholar 

  • Huang J, Ding X, Savini G et al (2013) A comparison between Scheimpflug imaging and optical coherence tomography in measuring corneal thickness. Ophthalmology 120:1951–1958

    Article  PubMed  Google Scholar 

  • Huang J, Pesudovs K, Yu A et al (2011) A comprehensive comparison of central corneal thickness measurement. Optom Vis Sci 88:940–949

    Article  PubMed  Google Scholar 

  • Tehrani M, Schaefer M, Koeppe J, Dick HB (2007) Preoperative simulation of postoperative iris-fixated phakic intraocular lens position and simulation of aging using high-resolution Scheimpflug imaging. J Cataract Refract Surg 33:11–14

    Article  PubMed  Google Scholar 

  • Baumeister M, Bühren J, Kohnen T (2004) Position of angle-supported, iris-fixated, and ciliary sulcus-implanted myopic phakic intraocular lenses evaluated by Scheimpflug photography. Am J Ophthalmol 138:723–731

    Article  PubMed  Google Scholar 

  • Touzeau O, Allouch C, Borderie V, Ameline B, Chastang P, Bouzegaou F, Laroche L (2001) Precision and reliability of Orbscan and ultrasonic pachymetry. J Fr Ophthalmol 24:912–921

    CAS  Google Scholar 

  • Ho T, Cheng AC, Rao SK, Lau S, Leung CK, Lam DS (2007) Central corneal thickness measurements using Orbscan II, Visante, ultrasound, and Pentacam pachymetry after laser in situ keratomileusis for myopia. J Cataract Refract Surg 33:1177–1182

    Article  PubMed  Google Scholar 

  • Kohnen T, Terzi E, Bühren J, Kohnen EM (2003) Comparison of a digital and a handheld infrared pupillometer for determining scotopic pupil diameter. J Cataract Refract Surg 29:112–117

    Article  PubMed  Google Scholar 

  • Kohnen T, Terzi E, Kasper T, Kohnen EM, Bühren J (2004) Correlation of infrared pupillometers and CCD-camera imaging from aberrometry and videokeratography for determining scotopic pupil size. J Cataract Refract Surg 30:2116–2123

    Article  PubMed  Google Scholar 

  • Reinstein DZ, Archer TJ, Silverman RH, Rondeau MJ, Coleman DJ (2009) Correlation of anterior chamber angle and ciliary sulcus diameters with white-to-white corneal diameter in high myopes using artemis VHF digital ultrasound. J Refract Surg 25:185–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowsey JJ, Reynolds AE, Brown R (1981) Corneal topography. Arch Ophthalmol 99:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Seitz B, Behrens A, Langenbucher A (1997) Corneal topography. Curr Opin Ophthalmol 8:8–24

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz YS, Rasheed K (1999) KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg 25:1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Smolek MK, Klyce SD (1997) Current keratoconus detection methods compared with a neural network approach. Investig Ophthalmol Vis Sci 38:2290–2299

    CAS  Google Scholar 

  • Langenbucher A, Seitz B, Kus MM, van der Heyd GJ (1998) Topography-assisted correction of superficial irregularities of the cornea with the excimer laser. Klin Monbl Augenheilkd 213:132–140

    Article  CAS  PubMed  Google Scholar 

  • Schwiegerling J, Greivenkamp JE, Miller JM (1995) Representation of videokeratoscopic height data with Zernike polynomials. J Opt Soc Am A 12:2105–2113

    Article  CAS  Google Scholar 

  • Bühren J, Kühne C, Kohnen T (2007) Defining subclinical keratoconus using corneal first-surface higher-order aberrations. Am J Ophthalmol 143:381–389

    Article  PubMed  Google Scholar 

  • Kohnen T, Mahmoud K, Bühren J (2005) Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK. Ophthalmology 112:1692

    Article  PubMed  Google Scholar 

  • Applegate RA, Marsack JD, Ramos R, Sarver EJ (2003) Interaction between aberrations to improve or reduce visual performance. J Cataract Refract Surg 29:1487–1495

    Article  PubMed  Google Scholar 

  • Montes-Mico R, Alio JL, Munoz G, Perez-Santonja JJ, Charman WN (2008) Postblink changes in total and corneal ocular aberrations. Ophthalmology 111:758–767

    Article  Google Scholar 

  • Mirshahi A, Bühren J, Gerhardt D, Kohnen T (2003) In vivo and in vitro repeatability of Hartmann-Shack aberrometry. J Cataract Refract Surg 29:2295–2301

    Article  PubMed  Google Scholar 

  • Rodriguez P, Navarro R, Gonzalez L, Hernandez JL (2004) Accuracy and reproducibility of Zywave, Tracey, and experimental aberrometers. J Refract Surg 20:810–817

    Article  PubMed  Google Scholar 

  • Zadok D, Levy Y, Segal O, Barkana Y, Morad Y, Avni I (2005) Ocular higher-order aberrations in myopia and skiascopic wavefront repeatability. J Cataract Refract Surg 31:1128–1132

    Article  PubMed  Google Scholar 

  • Bach M, Wesemann W, Kolling G, Bühren J, Krastel H, Schiefer U (2008) Photopisches Kontrastsehen. Örtliche Kontrastempfindlichkeit. Photopic contrast sensitivity. Local contrast perception. Ophthalmologe 105:46–48, 50–9

    Article  CAS  PubMed  Google Scholar 

  • Pesudovs K, Hazel CA, Doran RML, Elliott DB (2004) The usefulness of Vistech and FACT contrast sensitivity charts for cataract and refractive surgery outcomes resarch. Br J Ophthalmol 88:11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bühren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bühren, J., Kook, D., Kohnen, T. (2023). Diagnostik in der refraktiven Chirurgie. In: Kohnen, T. (eds) Refraktive Chirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60946-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60946-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60945-3

  • Online ISBN: 978-3-662-60946-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics