Skip to main content

Zusammenfassung

Kohlenstoffdioxid (CO2) muss reduziert werden, um daraus Biomasse (Biokatalysatoren) und organische Moleküle herstellen zu können. Mikroorganismen verfügen über eine ganze Reihe von Möglichkeiten zur Bereitstellung von Elektronen zur CO2-Reduktion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  2. Schlegel HG, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-[beta]-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465

    CAS  Google Scholar 

  3. Yu J (2018) Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol 34:89

    Google Scholar 

  4. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2):e00103-10

    Google Scholar 

  5. Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210. https://doi.org/10.1186/s13068-015-0393-x

    Article  CAS  Google Scholar 

  6. Chmiel H, Weuster-Botz D (2018) Bioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 157–229

    Google Scholar 

  7. Vega JL, Holmberg VL, Clausen EC, Gaddy JL (1988) Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H2/CO2). Arch Microbiol 151:65–70

    Google Scholar 

  8. Chang I-S, Kim D-H, Kim B-H, Shin P-K, Sung H-C, Lovitt RW (1998) CO fermentation of Eubacterium limosum KIST612. J Microbiol Biotechnol 8:134–140

    CAS  Google Scholar 

  9. Skidmore BE, Baker RA, Banjade DR, Bray JM, Tree DR, Lewis RS (2013) Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency. Biomass Bioenergy 55:162–165

    Google Scholar 

  10. Mohammadi M, Mohamed AR, Najafpour GD, Younesi H, Uzir MH (2014) Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii. Sci World J 2014:910590

    Google Scholar 

  11. Mayer A, Schädler T, Trunz S, Stelzer T, Weuster-Botz D (2018) Carbon monoxide conversion with Clostridium aceticum. Biotechnol Bioeng 115(11):2740–2750

    CAS  Google Scholar 

  12. Doll (2018) Reaktionstechnische Untersuchungen zur autotrophen Herstellung von Alkoholen mit Clostridium carboxidivorans. Dissertation, TU München

    Google Scholar 

  13. Takors R, WeusterBotz D (2018) Prozessmodelle. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 71–105

    Google Scholar 

  14. Chen J, Gomez JA, Höffner K, Barton PI, Henson MA (2015) Metabolic modeling of synthesis gas fermentation in bubble column reactors. Biotechnol Biofuels 8:89. https://doi.org/10.1186/s13068-015-0272-5

    Article  CAS  Google Scholar 

  15. Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474

    CAS  Google Scholar 

  16. Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94

    CAS  Google Scholar 

  17. Groher A, Weuster-Botz D (2016) General medium for the autotrophic cultivation of acetogens. Bioproc Biosys Eng 39:1645–1650

    CAS  Google Scholar 

  18. Kantzow C, Weuster-Botz D (2016) Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii. Bioproc Biosys Eng 39:1325–1330

    CAS  Google Scholar 

  19. Mayer A, Weuster-Botz D (2017) Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum. FEMS Microbiol Lett 364(22). https://doi.org/10.1093/femsle/fnx219

  20. Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843

    CAS  Google Scholar 

  21. Denecke M, Steuernagel L (2018) Mikrobielle Abwasserreinigung. In: Takors R, Weuster-Botz D (Hrsg) Chmiel H. Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 478–488

    Google Scholar 

  22. Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol 212:11–18

    CAS  Google Scholar 

  23. Richter H, Martin ME, Angenent LT (2013) A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6:3987–4000

    CAS  Google Scholar 

  24. Martin ME, Richter H, Saha S, Angenent LT (2015) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113:531–539

    Google Scholar 

  25. Doll K, Rückel A, Kämpf P, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioproc Biosys Eng 41:1403–1416

    CAS  Google Scholar 

  26. Heijstra BD, Leang C, Juminaga A (2017) Gas fermentation: cellular engineering possibilities and scale-up. Microb Cell Fact 16:60

    Google Scholar 

  27. Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2017) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 2015:386–396

    Google Scholar 

  28. Takors R, Kopf M, Mampel J, Bluemke W, Blombach B, Eikmanns B, Bengelsdorf F, Weuster-Botz D, Dürre P (2018) Using gas mixtures of CO, CO2, and H2 as microbial substrates: the dos and don’ts of successful technology transfer from lab to production scale. Microb Biotechnol 11:606–625

    CAS  Google Scholar 

  29. Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis gas fermentations. Biotechnol Prog 15:834–844

    CAS  Google Scholar 

  30. Yasin M, Jeong Y, Park SJ, Jeong J, Lee EY, Lowitt RW, Kim BH, Lee J, Chang IS (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Biores Technol 177:361–374

    CAS  Google Scholar 

  31. Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL (2016) Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using C. ragsdalei. Biores Technol 209:56–65

    CAS  Google Scholar 

  32. Shen Y, Brauwn RC, Wen Z (2017) Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594

    CAS  Google Scholar 

  33. Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35:2690–2696

    CAS  Google Scholar 

  34. Liew FM, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation – a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694. https://doi.org/10.3389/fmicb.2016.0069

    Article  Google Scholar 

  35. Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2016) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 215:386–396

    CAS  Google Scholar 

  36. Klassen KT, Ackerson CMD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72:1673–1678

    Google Scholar 

  37. Phillips JR, Atiyeh HK, Huhnke RL (2014) Method for design of production medium for fermentation of synthesis gas to ethanol by acetogenic bacteria. Biological Eng Trans 7(3):113–128

    CAS  Google Scholar 

  38. Ahmed A, Lewis R (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97:1080–1086

    CAS  Google Scholar 

  39. Voegele E (2018) Former Ineos Bio site purchased for conversion into eco-district. Biomass Magazine 15089

    Google Scholar 

  40. Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davos RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. Chemsuschem 11:334–355

    CAS  Google Scholar 

  41. Posten C (2018) Fotobioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 188–196

    Google Scholar 

  42. Grobbelaar JU (2009) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J Appl Phycol 21:523–527

    CAS  Google Scholar 

  43. Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886

    Google Scholar 

  44. Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, Brück T, Weuster-Botz D (2017) Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res 25:381–390

    Google Scholar 

  45. Severin TS, Apel A, Brück T, Weuster-Botz D (2018) Investigation of vertical mixing in open thin-layer cascade reactors using Computational Fluid Dynamics. Chem Eng Res Des 132:436–444

    CAS  Google Scholar 

  46. Apel A, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioproc Biosys Eng 38:995–1008

    CAS  Google Scholar 

  47. Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D (2016) Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algae Res 20:153–163

    Google Scholar 

  48. Koller A, Löwe H, Schmid V, Mundt S, Weuster-Botz D (2017) Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol Bioeng 114:308–320

    CAS  Google Scholar 

  49. Koller A, Wolf L, Brück T, Weuster-Botz D (2018) Studies on the scale-up of biomass production with Scenedesmus sp. in flat-plate gas-lift photobioreactors. Bioproc Biosys Eng 41:213–220

    CAS  Google Scholar 

  50. Koller A, Wolf L, Weuster-Botz D (2017) Reaction engineering analysis of Scenedesmus ovalternus in a flat-plate gas-lift photobioreactor. Biores Technol 225:165–174

    CAS  Google Scholar 

  51. Pfaffinger CE (2017) Reaktionstechnische Untersuchungen zur Lipidherstellung mit Nannochloropsis sp. in verschiedenen Photobioreaktoren. Dissertation, TU München

    Google Scholar 

  52. King GM (2001) Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar Ecol Prog Ser 224:69–75

    CAS  Google Scholar 

  53. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sus Energ Rev 14:557–577

    CAS  Google Scholar 

  54. Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial Biosynthesis of alkanes. Science 329(8991):559–562

    CAS  Google Scholar 

  55. Diender M, Stams AJM, Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 6:1275. https://doi.org/10.3389/fmicb.2015.01275

    Article  Google Scholar 

  56. Weizmann C (1919) Improvements in the bacterial fermentation of carbohydrates and in bacterial cultures for the same. Patent, GB191504845

    Google Scholar 

  57. Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191–2198

    CAS  Google Scholar 

  58. Lanzatech (2018) Pressemitteilung. http://www.lanzatech.com/worlds-first-commercial-waste-gas-ethanol-plant-starts/

  59. Steelanol (2018) Pressemitteilung. http://www.steelanol.eu/en/news/arcelormittal-and-lanzatech-break-ground-on-150million-project-to-revolutionise-blast-furnace-carbon-emissions-capture

  60. Lanzatech (2018) Pressemitteilung. http://www.lanzatech.com/category/news/

  61. Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342(6164):1382–1385

    CAS  Google Scholar 

  62. Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Microbiol 72:154–174

    CAS  Google Scholar 

  63. Mechichi T, Labat M, Patel BKC, Woo THS, Thomas P, Garcia J-L (1999) Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1201–1209

    CAS  Google Scholar 

  64. Mechichi T, Labat M, Woo THS, Thomas P, Garcia J-L, Patel BKC (1998) Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. Anaerobe 4:283–291

    CAS  Google Scholar 

  65. Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing anaerobic bacteria. Int J Syst Bacteriol 27:355–361

    CAS  Google Scholar 

  66. Straub M, Demler M, Weuster-Botz D, Dürre P (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178:67–72

    CAS  Google Scholar 

  67. Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351

    CAS  Google Scholar 

  68. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232–236

    CAS  Google Scholar 

  69. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092

    Google Scholar 

  70. Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17(3):670–677

    CAS  Google Scholar 

  71. Huhnke RL, Lewis RS, Tanner RS (2008) Isolation and characterization of novel clostridial species, Patent, WO2008028055 A2. The Board of Regents for Oklahoma State University, Anmelder

    Google Scholar 

  72. Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Flüchter S, Öztürk H, Blümke W, May A, Fischer RJ, Bahl H (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47

    CAS  Google Scholar 

  73. Köpke M, Simpson S, Liew F (2012) Fermentation process for producing isopropanol using a recombinant microorganism. Patent, US20120252083 A1, Anmelder: LanzaTech New Zealand Ltd.

    Google Scholar 

  74. Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Dürre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036

    Google Scholar 

  75. Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite Pterotermes occidentis. Arch Microbiol 156:91–98

    CAS  Google Scholar 

  76. Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263

    CAS  Google Scholar 

  77. Liou JS, Blakwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091

    CAS  Google Scholar 

  78. Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5(5):e01636-14

    Google Scholar 

  79. Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng 72:58–60

    CAS  Google Scholar 

  80. Köpke M, Liew F (2012) Production of butanol from carbon monoxide by a recombinant microorganism. Patent, WO2012053905 A1, Anmelder: LanzaTech New Zealand Ltd.

    Google Scholar 

  81. Van Leeuwen BN, van der Wulp AM, Duijnstee I, van Maris AJ, Straathof AJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387

    CAS  Google Scholar 

  82. Güntner B (2016) Recombinant microorganism producing alkenes from acetyl-CoA. Patent, WO2016034691A1. Syngip Bv, Anmelder

    Google Scholar 

  83. Furutani M, Uenishi A, Iwasa K, Jennewein S, Fischer R (2013) Recombinant cell and production method for isoprene. Patent, EP2913392A1. Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung, Sekisui Chemical Co Ltd, Anmelder

    Google Scholar 

  84. Beck Z, Cervin M, Chotani G, Diner B, Fan J, Peres C, Sanford K, Scotcher M, Wells D, Whited G (2014) Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas. US20140234926A1. Goodyear Tire and Rubber Co. & Danisco US Inc., Anmelder

    Google Scholar 

  85. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464

    CAS  Google Scholar 

  86. Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114

    CAS  Google Scholar 

  87. Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5(12):1355–1361

    CAS  Google Scholar 

  88. Nagaraju S, Davies NK, Walker DJF, Köpke M, Simpson SD (2016) Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels 9:219

    Google Scholar 

  89. Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12:118

    Google Scholar 

  90. Humphreys CM, Minton NP (2018) Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol 50:174–181

    CAS  Google Scholar 

  91. Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E (2017) Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 41:202–211

    CAS  Google Scholar 

  92. Molitor B, Marcellin E, Angenent LT (2017) Overcoming the energetic limitations of syngas fermentation. Curr Opin Chem Biol 41:84–92

    CAS  Google Scholar 

  93. Ganigué R, Sánchez-Paredes P, Baneras L, Colprim J (2016) Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front Microbiol 7:702

    Google Scholar 

  94. Jajesniak P, Omar Ali HE, Wong TS (2014) Carbon dioxide capture and utilization using biological systems: opportunities and challenges. J Bioproces Biotechniq 4:155. https://doi.org/10.4172/2155-9821.1000155

    Article  CAS  Google Scholar 

  95. Matassa S, Boon N, Verstraete W (2015) Resource recovery from used water: the manufacturing abilities of hydrogen-oxidizing bacteria. Wat Res 68:467–478. https://doi.org/10.1016/j.watres.2014.10.028

    Article  CAS  Google Scholar 

  96. Avecom (2017) https://www.powertoprotein.eu/#info. Zugegriffen: Aug. 2017

  97. Kaur G, Roy I (2015) Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 29(2):157–172. https://doi.org/10.15255/cabeq.2014.2255

    Article  CAS  Google Scholar 

  98. Franke A, Clemmesen C, De Schryver P, Garcia-Gonzalez L, Miest JJ, Roth O (2017) Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass postlarvae. Aquacult Res 48(12):5707–5717

    CAS  Google Scholar 

  99. MIP (2017) http://www.mipvlaanderen.be/nl/webpage/150/biopol.aspx and http://www.i-cleantechvlaanderen.be/co2mpass. Zugegriffen: Aug. 2017

  100. Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol 57:6–12. https://doi.org/10.1007/s002530100775

    Article  CAS  Google Scholar 

  101. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743. https://doi.org/10.1002/jctb.2392

    Article  CAS  Google Scholar 

  102. Tanaka K, Ishizaki A (1994) Production of poly-D-3-hydroxybutyric acid from carbon dioxide by a two-stage culture method employing Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 77:425–427. https://doi.org/10.1016/0922-338x(94)90017-5

    Article  CAS  Google Scholar 

  103. Garcia-Gonzalez L, Mozumder MSI, Dubreuil M, Volcke EIP, De Wever H (2015) Sustainable autotrophic production of polyhydroxybutyrate (PHB) from CO2 using a two-stage cultivation system. Catal Today 257:237–245. https://doi.org/10.1016/j.cattod.2014.05.025

    Article  CAS  Google Scholar 

  104. Garcia-Gonzalez L, De Wever H (2017) Valorization of CO2-rich off-gases to biopolymers through biotechnological process. FEMS Microbiol Lett 364(20). https://doi.org/10.1093/femsle/fnx196

  105. Mozumder MSI, Garcia-Gonzalez L, De Wever H, Volcke EIP (2016) Model-based process analysis of heterotrophic-autotrophic poly(3-hydroxybutyrate) (PHB) production. Biochem Eng J 114:202–208. https://doi.org/10.1016/j.bej.2016.07.007

    Article  CAS  Google Scholar 

  106. Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour Technol 146:215–222. https://doi.org/10.1016/j.biortech.2013.07.070

    Article  CAS  Google Scholar 

  107. Park I, Jho EH, Nam K (2014) Optimization of carbon dioxide and valeric acid utilization for polyhydroxyalkanoates synthesis by Cupriavidus necator. J Polym Environ 22(2):244–251. https://doi.org/10.1007/s10924-013-0627-6

    Article  CAS  Google Scholar 

  108. Weuster-Botz D, Takors R (2018) Wachstumskinetik. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 45–70

    Google Scholar 

  109. Schulte MJ, Wiltgen J, Ritter J, Mooney CB, Flickinger MC (2016) A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite. Biotechnol Bioeng 113:1913–1923

    CAS  Google Scholar 

  110. Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, Chang JS, Lin CS (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weuster-Botz, D., Kensy, F., De Wever, H., Garcia-Gonzalez, L. (2020). Mikrobielle Verfahren zur Umsetzung von CO2 und CO. In: Kircher, M., Schwarz, T. (eds) CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60649-0_8

Download citation

Publish with us

Policies and ethics