Skip to main content

Black Hole Merging and Gravitational Waves

  • Chapter
  • First Online:
Black Hole Formation and Growth

Part of the book series: Saas-Fee Advanced Course ((SAASFEE,volume 48))

Abstract

I was tasked with covering a wide swath of gravitational wave astronomy—including theory, observation, and data analysis—and to describe the detection techniques used to span the gravitational wave spectrum—pulsar timing, ground based interferometers and their future space based counterparts. For good measure, I was also asked to include an introduction to general relativity and black holes. Distilling all this material into nine lectures was quite a challenge. The end result is a highly condensed set of lecture notes that can be consumed in a few hours, but may take weeks to digest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadie, J., et al.: A gravitational wave observatory operating beyond the quantum shot-noise limit: squeezed light in application. Nat. Phys. 7, 962–965 (2011). arXiv:1109.2295 [quant-ph]

  2. Abbott, B.P., et al.: Calibration of the advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Phys. Rev. D 95, 062003 (2017). arXiv:1602.03845 [gr-qc]

  3. Arzoumanian, Z., et al.: The NANOGrav 11-year data set: pulsar-timing constraints on the stochastic gravitational-wave background. Astrophys. J. 859, 47 (2018). arXiv:1801.02617 [astro-ph.HE]

  4. Audley, H., et al.: Laser interferometer space antenna (2017). arXiv:1702.00786 [astro-ph.IM]

  5. Backer, D.C., Kulkarni, S.R., Heiles, C., Davis, M.M., Goss, W.M.: A millisecond pulsar. Nature 300, 615–618 (1982)

    Article  ADS  Google Scholar 

  6. Braak, C.J.F.T.: A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006). https://doi.org/10.1007/s11222-006-8769-1. ISSN:1573-1375

  7. Brooks, S., Gelman, A., Jones, G., Meng, X.: Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton (2011). https://books.google.com/books?id=qfRsAIKZ4rIC. ISBN:9781420079425

  8. Brügmann, B.: Fundamentals of numerical relativity for gravitational wave sources. Science 361, 366–371 (2018). https://science.sciencemag.org/content/361/6400/366.full.pdf. ISSN:0036-8075

  9. Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). arXiv:gr-qc/9811091 [gr-qc]

  10. Buonanno, A., Sathyaprakash, B.S.: In: Ashtekar, A., Berger, B.K., Isenberg, J., MacCallum, M.E. (eds.) General Relativity and Gravitation: A Centennial Perspective, pp. 287–346. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  11. Carroll, S., Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, New York (2004). ISBN:9780805387322

    Google Scholar 

  12. Cornish, N.J.: Alternative derivation of the response of interferometric gravitational wave detectors. Phys. Rev. D 80, 087101 (2009). arXiv:0910.4372 [gr-qc]

  13. Cornish, N.J., Crowder, J.: LISA data analysis using MCMC methods. Phys. Rev. D 72, 043005 (2005). arXiv:gr-qc/0506059 [gr-qc]

  14. Cornish, N.J., Littenberg, T.B.: BayesWave: Bayesian inference for gravitational wave bursts and instrument glitches. Class. Quantum Gravity 32, 135012 (2015). arXiv:1410.3835 [gr-qc]

  15. Cornish, N.J., Romano, J.D.: Towards a unified treatment of gravitational-wave data analysis. Phys. Rev. D 87, 122003 (2013). arXiv:1305.2934 [gr-qc]

  16. Creighton, J., Anderson, W.: Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis. Wiley, New York (2012). ISBN:9783527636044

    Google Scholar 

  17. Detweiler, S.: Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 234, 1100–1104 (1979)

    Article  ADS  Google Scholar 

  18. Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. (German) [On the relativity principle and the conclusions drawn from it]. Jahrbuch der Radioaktivität und Elektronik 4, 411–462 (1908)

    Google Scholar 

  19. Einstein, A.: Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp. 844–847 (1915)

    Google Scholar 

  20. Einstein, A., Infeld, L., Hoffmann, B.: The gravitational equations and the problem of motion. Ann. Math. (2) 39, 65–100 (1938a)

    Google Scholar 

  21. Einstein, A., Infeld, L., Hoffmann, B.: The gravitational equations and the problems of motion. Ann. Math. (2) 41, 455–564 (1938b)

    Google Scholar 

  22. Estabrook, F.B., Wahlquist, H.D.: Response of Doppler spacecraft tracking to gravitational radiation. Gen. Relativ. Gravit. 6, 439–447 (1975)

    Article  ADS  Google Scholar 

  23. Gelman, A., et al.: Bayesian Data Analysis. CRC Press, Boca Raton (2013). ISBN:9781439898208

    Google Scholar 

  24. Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. Taylor & Francis, New York (1995). ISBN:9780412055515

    Google Scholar 

  25. Gralla, S.E., Wald, R.M.: A rigorous derivation of gravitational selfforce. Class. Quantum Gravity 25 [Erratum: Class. Quantum Gravity 28, 159501 (2011)], 205009 (2008). arXiv:0806.3293 [gr-qc]

  26. Hellings, R.W., Downs, G.S.: Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. 265, L39–L42 (1983)

    Article  ADS  Google Scholar 

  27. Hewitson, M.: LISA science study team, LISA science requirements document, Issue 1.0 (2018). https://atrium.in2p3.fr/

  28. Hobbs, G., Edwards, R., Manchester, R.: Tempo2, a new pulsar timing package. 1. Overview. Mon. Not. R. Astron. Soc. 369, 655–672 (2006). arXiv:astro-ph/0603381 [astro-ph]

  29. Isaacson, R.A.: Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Phys. Rev. 166, 1272–1279 (1968b)

    Google Scholar 

  30. Isaacson, R.A.: Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics. Phys. Rev. 166, 1263–1271 (1968a)

    Google Scholar 

  31. Izumi, K., Sigg, D.: Advanced LIGO: length sensing and control in a dual recycled interferometric gravitational wave antenna. Class. Quantum Gravity 34, 015001. https://doi.org/10.1088/0264-9381/34/1/015001

  32. Jackson, J.: Classical Electrodynamics. Wiley, New York (1975)

    Google Scholar 

  33. Kawamura, S., et al.: The Japanese space gravitational wave antenna: DECIGO. Class. Quantum Gravity 28, 094011 (2011)

    Article  ADS  Google Scholar 

  34. Kelley, L.Z., Blecha, L., Hernquist, L., Sesana, A., Taylor, S.R.: The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays. Mon. Not. R. Astron. Soc. 471, 4508–4526 (2017). arXiv:1702.02180 [astro-ph.HE]

  35. Lehner, L., Pretorius, F.: Numerical relativity and astrophysics. Annu. Rev. Astron. Astrophys. 52, 661–694 (2014). https://doi.org/10.1146/annurev-astro-081913-040031

  36. Levin, J., Perez-Giz, G.: A periodic table for black hole orbits. Phys. Rev. D 77, 103005 (2008). arXiv:0802.0459 [gr-qc]

  37. Maggiore, M.: Gravitational Waves. Volume 1, Theory and Experiments. Oxford University Press, Oxford (2007). ISBN:9780191717666

    Google Scholar 

  38. Mathur, S.D.: What are fuzzballs, and do they have to behave as firewalls? In: Proceedings, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes): Rome, Italy, 12–18 July 2015, vol. 1, pp. 64–81 (2017)

    Google Scholar 

  39. Mino, Y., Sasaki, M., Tanaka, T.: Gravitational radiation reaction to a particle motion. Phys. Rev. D 55, 3457–3476 (1997). https://link.aps.org/doi/10.1103/PhysRevD.55.3457

  40. Misner, C., Thorne, K., Wheeler, J.: General Relativity. W. H. Freeman and Company, San Francisco (1968)

    Google Scholar 

  41. Owen, B.J.: Search templates for gravitational waves from inspiraling binaries: choice of template spacing. Phys. Rev. D 53, 6749–6761 (1996). arXiv:gr-qc/9511032 [gr-qc]

  42. Owen, B.J., Sathyaprakash, B.S.: Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys. Rev. D 60, 022002 (1999). arXiv:gr-qc/9808076 [gr-qc]

  43. Pais, A.: Subtle is the Lord: The Science and the Life of Albert Einstein. Oxford University Press, Oxford (2005). https://books.google.fr/books?id=0QYTDAAAQBAJ. ISBN:9780192806727

  44. Poisson, E.: The motion of point particles in curved spacetime. Living Rev. Relativ. 7, 6 (2004). https://doi.org/10.12942/lrr-2004-6. ISSN:1433-8351

  45. Poisson, E., Will, C.: Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, Cambridge (2014). https://books.google.fr/books?id=PZ5cAwAAQBAJ. ISBN:9781107032866

  46. Quinn, T.C., Wald, R.M.: Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime. Phys. Rev. D 56, 3381–3394 (1997). https://link.aps.org/doi/10.1103/PhysRevD.56.3381

  47. Rakhmanov, M.: Fermi-normal, optical, and wave-synchronous coordinates for spacetime with a plane gravitational wave. Class. Quantum Gravity 31, 085006 (2014). arXiv:1409.4648 [gr-qc]

  48. Robson, T., Cornish, N., Liu, C.: The construction and use of LISA sensitivity curves. Class. Quantum Gravity 36, 105011 (2019). arXiv:1803.01944 [astro-ph.HE]

  49. Romano, J.D., Cornish, N.J.: Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Rev. Relativ. 20, 2 (2017). arXiv:1608.06889 [gr-qc]

  50. Schutz, B., Schutz, D.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985). ISBN:9780521277037

    Google Scholar 

  51. Sivia, D., Skilling, J.: Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford (2006). ISBN:9780198568315

    Google Scholar 

  52. Skilling, J.: Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006). https://doi.org/10.1214/06-BA127

  53. Van de Meent, M.: Modelling EMRIs with gravitational self-force: a status report. J. Phys.: Conf. Ser. 840, 012022. https://doi.org/10.1088/1742-6596/840/1/012022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil J. Cornish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cornish, N.J. (2019). Black Hole Merging and Gravitational Waves. In: Walter, R., Jetzer, P., Mayer, L., Produit, N. (eds) Black Hole Formation and Growth. Saas-Fee Advanced Course, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59799-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59799-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59798-9

  • Online ISBN: 978-3-662-59799-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics