Skip to main content

Design, Engineering, and Evaluation of Porphyrins for Dye-Sensitized Solar Cells

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

Dye-sensitized solar cells (DSCs) have attracted worldwide attention due to their low cost and versatility. Porphyrins have broad and intense absorption in the visible region, versatility in tuning the molecular structure. Early porphyrin dyes are generally β-functionalized meso-teraarylporphyrins. In the late 2000s, several groups began to pay their attention to meso-functionalized porphyrins. In 2010, the meso- functionalized porphyrin dye with donor-π-acceptor structure, achieved an efficiency of 11%. Since then, dozens of donor-π-acceptor porphyrin dyes with >10% efficiency have been reported. In 2014, the energy conversion efficiency of 13% was reached. However, some challenges still exist including inefficient photon capture in the regions around 520 nm and >700 nm, severe aggregation because of porphyrin’s planar structure and rich π electrons, and poor long-term stability resulting from the weak binding capability of the anchoring group. In this chapter, we will provide readers the operation principles of DSC, an evolution of porphyrin dyes as the best candidates for DSCs, and challenges facing porphyrin dyes for DSCs. Different design strategies, synthetic protocols, as well as their photovoltaic performance of representative dyes will be discussed.

Author Contribution

W. Li wrote the manuscript related to the solar properties, M. Elkhaklifa the synthesis section, and H. He revised the second draft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 26 March 2023

    The chapter was inadvertently published with an incorrect spelling of the author's name as Mahamoud Elkhaklifa whereas it should be Mahmoud Elkhalifa

References

  1. M.I. Asghar, K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola, P. Lund, Review of stability for advanced dye solar cells. Energy Environ. Sci. 3(4), 418–426 (2010). https://doi.org/10.1039/B922801B

    Article  CAS  Google Scholar 

  2. J.M. Ball, N.K.S. Davis, J.D. Wilkinson, J. Kirkpatrick, J. Teuscher, R. Gunning, H.L. Anderson, H.J. Snaith, A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Adv. 2(17), 6846–6853 (2012). https://doi.org/10.1039/C2RA20952G

    Article  CAS  Google Scholar 

  3. T. Bessho, S.M. Zakeeruddin, C.Y. Yeh, E.W. Diau, M. Grätzel, Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. Engl. 49(37), 6646–6649 (2010). https://doi.org/10.1002/anie.201002118

    Article  CAS  Google Scholar 

  4. B.J. Brennan, M.J. Llansola Portolés, P.A. Liddell, T.A. Moore, A.L. Moore, D. Gust, Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 15(39), 16605–16614 (2013). https://doi.org/10.1039/c3cp52156g

    Article  CAS  Google Scholar 

  5. W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Porphyrins as light harvesters in the dye-sensitized TiO2 solar cell. Coord. Chem. Rev. 248(13), 1363–1379 (2004). https://doi.org/10.1016/j.ccr.2004.01.007

    Article  CAS  Google Scholar 

  6. W.M. Campbell, K.W. Jolley, P. Wagner, K. Wagner, P.J. Walsh, K.C. Gordon, L. Schmidt-Mende, M.K. Nazeeruddin, Q. Wang, M. Grätzel, Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 111(32), 11760–11762 (2007). https://doi.org/10.1021/jp0750598

    Article  CAS  Google Scholar 

  7. Y. Cao, B. Yu, Q. Yu, Y. Cheng, S. Liu, S. Dong, F. Gao, P. Wang, Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. J. Phys. Chem. C 113(15), 6290–6297 (2009). https://doi.org/10.1021/jp9006872

    Article  CAS  Google Scholar 

  8. C.M. Carcel, J.K. Laha, R.S. Loewe, P. Thamyongkit, K. Schweikart, V. Misra, D.F. Bocian, J.S. Lindsey, Porphyrin architectures tailored for studies of molecular information storage. J. Org. Chem. 69(20), 6739–6750 (2004). https://doi.org/10.1021/jo0498260

    Article  CAS  Google Scholar 

  9. D.E. Carlson, C.R. Wronski, Amorphous silicon solar cells. IEEE Trans. Electron Devices 36(12), 2775–2780 (1976). https://doi.org/10.1063/1.88617

    Article  Google Scholar 

  10. Y.C. Chang, C.L. Wang, T.Y. Pan, S.H. Hong, C.M. Lan, H.H. Kuo, C.F. Lo, H.Y. Hsu, C.Y. Lin, E.W. Diau, A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 47(31), 8910–8912 (2011). https://doi.org/10.1039/C1CC12764K

    Article  CAS  Google Scholar 

  11. C. Chen, X. Yang, M. Cheng, F. Zhang, L. Sun, Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells. ChemSusChem 6(7), 1270–1275 (2013). https://doi.org/10.1002/cssc.201200949

    Article  CAS  Google Scholar 

  12. S. Cherian, C.C. Wamser, Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2. J. Phys. Chem. B 104(104), 3624–3629 (2000). https://doi.org/10.1021/jp994459v

    Article  CAS  Google Scholar 

  13. J.N. Clifford, E. Martínez-Ferrero, A. Viterisi, E. Palomares, Sensitizer molecular structure-device efficiency relationship in dye-sensitized solar cells. Chem. Soc. Rev. 40(3), 1635–1646 (2011). https://doi.org/10.1039/b920664g

    Article  CAS  Google Scholar 

  14. J.R. Darwent, P. Douglas, A. Harriman, G. Porter, M.C. Richoux, Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord. Chem. Rev. 44(1), 83–126 (1982). https://doi.org/10.1016/S0010-8545(00)80518-4

    Article  CAS  Google Scholar 

  15. H. Deng, Y. Zhou, H. Mao, Z. Lu, The mixed effect of phthalocyanine and porphyrin on the photoelectric conversion of a nanostructured TiO2 electrode. Synth. Met. 92(92), 269–274 (1998). https://doi.org/10.1016/S0379-6779(98)80096-9

    Article  CAS  Google Scholar 

  16. S. Eu, S. Hayashi, T. Umeyama, A. Oguro, M. Kawasaki, N. Kadota, Y. Matano, H. Imahori, Effects of 5-membered heteroaromatic spacers on structures of porphyrin films and photovoltaic properties of porphyrin-sensitized TiO2 cells. J. Phys. Chem. C 111(8), 3528–3537 (2007). https://doi.org/10.1021/jp067290b

    Article  CAS  Google Scholar 

  17. S. Fan, X. Lu, H. Sun, G. Zhou, Y.J. Chang, Z.S. Wang, Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes. Phys. Chem. Chem. Phys. 18(2), 932–938 (2016). https://doi.org/10.1039/c5cp05986k

    Article  CAS  Google Scholar 

  18. A. Forneli, M. Planells, M.A. Sarmentero, E. Martinezferrero, B.C. O'Regan, P. Ballester, E. Palomares, The role of para-alkyl substituents on meso-phenyl porphyrin sensitized TiO2 solar cells: control of the eTiO2/electrolyte+ recombination reaction. J. Mater. Chem. 18(14), 1652–1658 (2008). https://doi.org/10.1039/B717081E

    Article  CAS  Google Scholar 

  19. J.H. Fuhrhop, The reactivity of the porphyrin ligand. Angew. Chem. Int. Ed. Engl. 13(5), 321–335 (1974). https://doi.org/10.1002/anie.197403211

    Article  Google Scholar 

  20. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Grätzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 130(32), 10720–10728 (2008). https://doi.org/10.1021/ja801942j

    Article  CAS  Google Scholar 

  21. M. Garcíaiglesias, J.H. Yum, R. Humphrybaker, S.M. Zakeeruddin, P. Péchy, P. Vázquez, E. Palomares, M. Grätzel, M.K. Nazeeruddin, T. Torres, Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. Chem. Sci. 2(6), 1145–1150 (2011). https://doi.org/10.1039/C0SC00602E

    Article  Google Scholar 

  22. M. Grätzel, Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4(2), 145–153 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1

    Article  CAS  Google Scholar 

  23. M. Grätzel, Photovoltaic performance and long-term stability of dye-sensitized mesoscopic solar cells. C. R. Chim. 9(5), 578–583 (2006). https://doi.org/10.1016/j.crci.2005.06.037

    Article  CAS  Google Scholar 

  24. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25(7), 668–676 (2017). https://doi.org/10.1002/pip.2909

    Article  Google Scholar 

  25. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010). https://doi.org/10.1021/cr900356p

    Article  CAS  Google Scholar 

  26. S. Hayashi, Y. Matsubara, S. Eu, H. Hayashi, T. Umeyama, Y. Matano, H. Imahori, Fused five-membered porphyrin for dye-sensitized solar cells. Chem. Lett. 37(8), 846–847 (2008). https://doi.org/10.1246/cl.2008.846

    Article  CAS  Google Scholar 

  27. S. Hayashi, M. Tanaka, H. Hayashi, S. Eu, T. Umeyama, Y. Matano, Y. Araki, H. Imahori, Naphthyl- fused π-elongated porphyrins for dye-sensitized TiO2 cells. J. Phys. Chem. C 112(39), 15576–15585 (2008). https://doi.org/10.1021/jp805122z

    Article  CAS  Google Scholar 

  28. H. He, A. Gurung, L. Si, 8-Hydroxyquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chem. Commun. 48(47), 5910–5912 (2012). https://doi.org/10.1039/c2cc31440a

    Article  CAS  Google Scholar 

  29. H. He, A. Gurung, L. Si, A.G. Sykes, A simple acrylic acid functionalized zinc porphyrin for cost-effective dye-sensitized solar cells. Chem. Commun. 48(61), 7619–7621 (2012). https://doi.org/10.1039/c2cc33337f

    Article  CAS  Google Scholar 

  30. T. Higashino, Y. Fujimori, K. Sugiura, Y. Tsuji, S. Ito, H. Imahori, Tropolone as a high-performance robust anchoring group for dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 54(31), 9052–9056 (2015). https://doi.org/10.1002/anie.201502951

    Article  CAS  Google Scholar 

  31. T. Higashino, K. Kawamoto, K. Sugiura, Y. Fujimori, Y. Tsuji, K. Kurotobi, S. Ito, H. Imahori, Effects of bulky substituents of push-pull porphyrins on photovoltaic properties of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(24), 15379–15390 (2016). https://doi.org/10.1021/acsami.6b03806

    Article  CAS  Google Scholar 

  32. T. Higashino, Y. Kurumisawa, C. Ning, Y. Fujimori, Y. Tsuji, S. Nimura, D. Packwood, J. Park, H. Imahori, A hydroxamic acid anchoring group for durable dye-sensitized solar cells with a cobalt redox shuttle. ChemSusChem 10(17), 3347–3351 (2017). https://doi.org/10.1002/cssc.201701157

    Article  CAS  Google Scholar 

  33. A. Hinsch, J.M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, J. Ferber, Long-term stability of dye-sensitized solar cells. Prog. Photovolt. Res. Appl. 9(6), 425–438 (2001). https://doi.org/10.1002/pip.397

    Article  CAS  Google Scholar 

  34. S. Horn, K. Dahms, M.O. Senge, Synthetic transformations of porphyrins – Advances 2004–2007. J. Porphyrins Phthalocyanines 12(10), 1053–1077 (2008). https://doi.org/10.1142/S108842460800042X

    Article  CAS  Google Scholar 

  35. C.P. Hsieh, H.P. Lu, C.L. Chiu, C.W. Lee, S.H. Chuang, C.L. Mai, W.N. Yen, S.J. Hsu, W.G. Diau, C.Y. Yeh, Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20(6), 1127–1134 (2010). https://doi.org/10.1039/b919645e

    Article  CAS  Google Scholar 

  36. H. Imahori, S. Hayashi, H. Hayashi, A. Oguro, S. Eu, T. Umeyama, Y. Matano, Effects of porphyrin substituents and adsorption conditions on photovoltaic properties of porphyrin-sensitized TiO2 cells. J. Phys. Chem. C 113(42), 18406–18413 (2009). https://doi.org/10.1021/jp907288h

    Article  CAS  Google Scholar 

  37. H. Imahori, Y. Matsubara, H. Iijima, T. Umeyama, Y. Matano, S. Ito, M. Niemi, N.V. Tkachenko, H. Lemmetyinen, Effects of the meso-diarylamino group of porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties. J. Phys. Chem. C 114(23), 686–694 (2010). https://doi.org/10.1021/jp102486b

    Article  CAS  Google Scholar 

  38. S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 18(9), 1202–1205 (2006). https://doi.org/10.1002/adma.200502540

    Article  CAS  Google Scholar 

  39. R.K. Kanaparthi, J. Kandhadi, L. Giribabu, Metal-free organic dyes for dye-sensitized solar cells: recent advances. Tetrahedron 44(6), 8383–8393 (2013). https://doi.org/10.1016/j.tet.2012.06.064

    Article  CAS  Google Scholar 

  40. A. Kato, R.D. Hartnell, M. Yamashita, H. Miyasaka, S. K-i, D.P. Arnold, Selective meso- monobromination of 5,15-diarylporphyrins via organopalladium porphyrins. J. Porphyrins Phthalocyanines 8(10), 1222–1227 (2009). https://doi.org/10.1142/S108842460400057X

    Article  Google Scholar 

  41. A. Kay, M. Grätzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97(23), 6272–6277 (1993). https://doi.org/10.1021/j100125a029

    Article  CAS  Google Scholar 

  42. B.G. Kim, K. Chung, J. Kim, Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chem. Eur. J. 19(17), 5220–5230 (2013). https://doi.org/10.1002/chem.201204343

    Article  CAS  Google Scholar 

  43. H. Kohjiro, S. Tadatake, K. Ryuzi, F. Akihiro, O. Yasuyo, S. Akira, S. Sadaharu, S. Kazuhiro, S. Hideki, A. Hironori, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003). https://doi.org/10.1021/jp026963x

    Article  CAS  Google Scholar 

  44. N. Krishna, K.J. Vamsi, S. Venkata, S. Singh, G.L. Prakash, L. Han, I. Bedja, R. Gupta, I.A. Kumar, Donor-π–acceptor based stable porphyrin sensitizers for dye-sensitized solar cells: effect of π-conjugated spacers. J. Phys. Chem. C 121(12), 6464–6477 (2017). https://doi.org/10.1021/acs.jpcc.6b12869

    Article  CAS  Google Scholar 

  45. K. Kurotobi, Y. Toude, K. Kawamoto, Y. Fujimori, S. Ito, P. Chabera, V. Sundström, H. Imahori, Highly asymmetrical porphyrins with the enhanced push-pull character for dye-sensitized solar cells. Chem. Eur. J. 19(50), 17075–17081 (2013). https://doi.org/10.1002/chem.201303460

    Article  CAS  Google Scholar 

  46. C.M. Lan, H.P. Wu, T.Y. Pan, C.W. Chang, W.S. Chao, C.T. Chen, C.L. Wang, C.Y. Lin, W.G. Diau, Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy Environ. Sci. 5(4), 6460–6464 (2012). https://doi.org/10.1039/c2ee21104a

    Article  CAS  Google Scholar 

  47. S.M. Lecours, S.G. Dimagno, M.J. Therien, Exceptional electronic modulation of porphyrins through meso-Arylethynyl groups. Electronic spectroscopy, electronic structure, and electrochemistry of [5,15-Bis[(aryl)ethynyl]- 10,20-diphenylporphinato]zinc(II) complexes. X-ray crystal structures of [5,15-Bis[(4′-fluorophenyl) ethynyl]-10, 20-diphenylporphinato] zinc (II) and 5,15-Bis[(4′-methoxyphenyl) ethynyl]-10,20-diphenylporphyrin. J. Am. Chem. Soc. 118(47), 11854–11864 (1996). https://doi.org/10.1021/ja962403y

    Article  CAS  Google Scholar 

  48. C.W. Lee, H.P. Lu, C.M. Lan, Y.L. Huang, Y.R. Liang, W.N. Yen, Y.C. Liu, Y.S. Lin, E.W. Diau, C.Y. Yeh, Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. Chem. Eur. J. 1035(6), 400–406 (2013). https://doi.org/10.1002/chem.200801572

    Article  CAS  Google Scholar 

  49. L.L. Li, E.W. Diau, Porphyrin-sensitized solar cells. Chem. Soc. Rev. 42(1), 291 (2013)

    Article  CAS  Google Scholar 

  50. W. Li, L. Si, Z. Liu, H. Wu, Z. Zhao, Y.B. Cheng, H. He, Bis(9,9-dihexyl-9H-fluorene-7-yl)amine (BDFA) as a new donor for porphyrin-sensitized solar cells. Org. Electron. 15(10), 2448–2460 (2014). https://doi.org/10.1016/j.orgel.2014.07.006

    Article  CAS  Google Scholar 

  51. W. Li, L. Si, Z. Liu, Z. Zhao, H. He, K. Zhu, B. Moore, Y.B. Cheng, Fluorene functionalized porphyrins as broadband absorbers for TiO2 nanocrystalline solar cells. J. Mater. Chem. A 2(33), 13667–13674 (2014). https://doi.org/10.1039/c4ta01954g

    Article  CAS  Google Scholar 

  52. W. Li, Z. Liu, H. Wu, Y.B. Cheng, Z. Zhao, H. He, Thiophene-functionalized porphyrins: synthesis, photophysical properties, and photovoltaic performance in dye-sensitized solar cells. J. Phys. Chem. C 119(10), 5265–5273 (2015). https://doi.org/10.1021/jp509842p

    Article  CAS  Google Scholar 

  53. M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 42(8), 3453–3488 (2013). https://doi.org/10.1039/c3cs35372a

    Article  CAS  Google Scholar 

  54. C.Y. Lin, C.F. Lo, M.H. Hsieh, S.J. Hsu, H.P. Lu, W.G. Diau, Preparation and photovoltaic characterization of free-base and Metallo carboxyphenylethynyl porphyrins for dye-sensitized solar cells. J. Chin. Chem. Soc. 57(5B), 1136–1140 (2010). https://doi.org/10.1002/jccs.201000162

    Article  CAS  Google Scholar 

  55. J.S. Lindsey, Synthetic routes to meso-patterned porphyrins. Acc. Chem. Res. 43(2), 300–311 (2010). https://doi.org/10.1021/ar900212t

    Article  CAS  Google Scholar 

  56. Y. Liu, N. Xiang, X. Feng, P. Shen, W. Zhou, C. Weng, B. Zhao, S. Tan, Thiophene-linked porphyrin derivatives for dye-sensitized solar cells. Chem. Commun. 18(18), 2499–2501 (2009). https://doi.org/10.1039/b821985k

    Article  CAS  Google Scholar 

  57. C.F. Lo, L. Luo, E.W. Diau, I.J. Chang, C.Y. Lin, Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces. Chem. Commun. 13(13), 1430–1432 (2006). https://doi.org/10.1039/b516782e

    Article  CAS  Google Scholar 

  58. H.P. Lu, C.Y. Tsai, W.N. Yen, C.P. Hsieh, C.W. Lee, C.Y. Yeh, W.G. Diau, Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of adsorbate. J. Phys. Chem. C 113(49), 20990–20997 (2009). https://doi.org/10.1021/jp908100v

    Article  CAS  Google Scholar 

  59. J. Luo, M. Xu, R. Li, K.W. Huang, C. Jiang, Q. Qi, W. Zeng, J. Zhang, C. Chi, P. Wang, N-annulated perylene as an efficient electron donor for porphyrin-based dyes: enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells. J. Am. Chem. Soc. 136(1), 265–272 (2014). https://doi.org/10.1021/ja409291g

    Article  CAS  Google Scholar 

  60. C.L. Mai, W.K. Huang, H.P. Lu, C.W. Lee, C.L. Chiu, Y.R. Liang, E.W. Diau, C.Y. Yeh, Synthesis and characterization of porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 46(5), 809–811 (2010). https://doi.org/10.1039/b917316a

    Article  CAS  Google Scholar 

  61. C.L. Mai, T. Moehl, C.H. Hsieh, J.D. Décoppet, S.M. Zakeeruddin, M. Grätzel, C.Y. Yeh, Porphyrin sensitizers bearing a pyridine-type anchoring group for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7(27), 14975–14982 (2015). https://doi.org/10.1021/acsami.5b03783

    Article  CAS  Google Scholar 

  62. V.S. Manthou, E.K. Pefkianakis, P. Falaras, G.C. Vougioukalakis, Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells. ChemSusChem 8(4), 588–599 (2015). https://doi.org/10.1002/cssc.201403211

    Article  CAS  Google Scholar 

  63. S. Mathew, A. Yella, P. Gao, R. Humphrybaker, B.F. Curchod, N. Ashariastani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242 (2014). https://doi.org/10.1038/NCHEM.1861

    Article  CAS  Google Scholar 

  64. A. Meindl, S. Plunkett, A.A. Ryan, K.J. Flanagan, S. Callaghan, M.O. Senge, Comparative synthetic strategies for the generation of 5,10- and 5,15-substituted push-pull porphyrins. Eur. J. Org. Chem. 2017(25), 3516–3516 (2017). https://doi.org/10.1002/ejoc.201700093

    Article  CAS  Google Scholar 

  65. R.L. Milot, C.A. Schmuttenmaer, Electron injection dynamics in high-potential porphyrin photoanodes. Acc. Chem. Res. 48(5), 1423–1431 (2015). https://doi.org/10.1021/ar500363q

    Article  CAS  Google Scholar 

  66. R.L. Milot, G.F. Moore, R.H. Crabtree, G.W. Brudvig, C.A. Schmuttenmaer, Electron injection dynamics from photoexcited porphyrin dyes into SnO2 and TiO2 nanoparticles. J. Phys. Chem. C 117(42), 21662–21670 (2015)

    Article  Google Scholar 

  67. S. Mozaffari, M.R. Nateghi, M.B. Zarandi, An overview of the challenges in the commercialization of dye-sensitized solar cells. Renew. Sust. Energy Rev. 71, 675–686 (2016). https://doi.org/10.1016/j.rser.2016.12.096

    Article  CAS  Google Scholar 

  68. M.K. Nazeeruddin, R. Humphry-Baker, D.L. Officer, W.M. Campbell, A.K. Burrell, M. Grätzel, Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20(15), 6514–6517 (2004). https://doi.org/10.1021/la0496082

    Article  CAS  Google Scholar 

  69. M.K. Nazeeruddin, F. De Angelis, F. Simona, S. Annabella, G. Viscardi, P. Liska, S. Ito, T. Bessho, M. Grätzel, Combined experimental and DFT-TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127(48), 16835 (2005). https://doi.org/10.1021/ja052467l

    Article  CAS  Google Scholar 

  70. P. Péchy, F.P. Rotzinger, M.K. Nazeeruddin, O. Kohle, S.M. Zakeeruddin, R. Humphrybaker, M. Grätzel, Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. J. Chem. Soc. Chem. Commun. 1(1), 65–66 (1995). https://doi.org/10.1039/C39950000065

    Article  Google Scholar 

  71. T. Ripolles-Sanchis, B.C. Guo, H.P. Wu, T.Y. Pan, H.W. Lee, S.R. Raga, F. Fabregat-Santiago, J. Bisquert, C.Y. Yeh, E.W. Diau, Design and characterization of alkoxy-wrapped push-pull porphyrins for dye-sensitized solar cells. Chem. Commun. 48(36), 4368–4370 (2012). https://doi.org/10.1039/c2cc31111a

    Article  CAS  Google Scholar 

  72. N. Robertson, Optimizing dyes for dye-sensitized solar cells. Angew. Chem. 37(27), 2338–2345 (2006)

    Article  Google Scholar 

  73. J. Rochford, D. Chu, A. Hagfeldt, E. Galoppini, Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. J. Am. Chem. Soc. 129(15), 4655–4665 (2007). https://doi.org/10.1021/ja068218u

    Article  CAS  Google Scholar 

  74. T.E.O. Screen, K.B. Lawton, G.S. Wilson, N. Dolney, R. Ispasoiu, T.G. Iii, S.J. Martin, D.D.C. Bradley, H.L. Anderson, Synthesis and third-order nonlinear optics of a new soluble conjugated porphyrin polymer. J. Mater. Chem. 11, 312–320 (2001). https://doi.org/10.1039/B007250H

    Article  CAS  Google Scholar 

  75. M.O. Senge, Stirring the porphyrin alphabet soup--functionalization reactions for porphyrins. Chem. Commun. 47(7), 1943–1960 (2011). https://doi.org/10.1039/c0cc03984e

    Article  CAS  Google Scholar 

  76. M.O. Senge, J. Richter, Synthetic transformations of porphyrins – advances 2002-2004. J. Porphyrins Phthalocyanines 8(07), 934–953 (2005). https://doi.org/10.1142/S1088424604000313

    Article  Google Scholar 

  77. D.M. Shen, C. Liu, X.G. Chen, Q.Y. Chen, Facile and efficient hypervalent iodine(III)-mediated meso- functionalization of porphyrins. J. Org. Chem. 74(1), 206–211 (2009). https://doi.org/10.1021/jo801855d

    Article  CAS  Google Scholar 

  78. J.W. Shiu, Y.C. Chang, C.Y. Chan, H.P. Wu, H.Y. Hsu, C.L. Wang, C.Y. Lin, E.G. Diau, Panchromatic co-sensitization of porphyrin-sensitized solar cells to harvest near-infrared light beyond 900 nm. J. Mater. Chem. A 3(4), 1417–1420 (2014). https://doi.org/10.1039/C4TA06589A

    Article  CAS  Google Scholar 

  79. H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20(1), 13–19 (2010). https://doi.org/10.1002/adfm.200901476

    Article  CAS  Google Scholar 

  80. P.M. Sommeling, M. Späth, H.J.P. Smit, N.J. Bakker, J.M. Kroon, Long-term stability testing of dye-sensitized solar cells. J. Photochem. Photobiol. A 164(1), 137–144 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.017

    Article  CAS  Google Scholar 

  81. M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Novel unsymmetrically pi- elongated porphyrin for dye-sensitized TiO2 cells. Chem. Commun. 20(20), 2069–2071 (2007). https://doi.org/10.1039/B702501G

    Article  Google Scholar 

  82. M. Urbani, M. Grätzel, M.K. Nazeeruddin, T. Torres, Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 114(24), 12330–12396 (2014)

    Article  CAS  Google Scholar 

  83. Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248(13–14), 1381–1389 (2004). https://doi.org/10.1016/j.ccr.2004.03.006

    Article  CAS  Google Scholar 

  84. Q. Wang, W.M. Campbell, E.E. Bonfantani, K.W. Jolley, D.L. Officer, P.J. Walsh, K. Gordon, R. Humphrybaker, M.K. Nazeeruddin, M. Grätzel, Efficient light harvesting by using green Zn-porphyrin- sensitized nanocrystalline TiO2 films. J. Phys. Chem. B 109(32), 15397–15409 (2005). https://doi.org/10.1021/jp052877w

    Article  CAS  Google Scholar 

  85. C.L. Wang, Y.C. Chang, C.M. Lan, C.F. Lo, W.G. Diau, C.Y. Lin, Enhanced light harvesting with π- conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energy Environ. Sci. 4(5), 1788–1795 (2011). https://doi.org/10.1039/C0EE00767F

    Article  CAS  Google Scholar 

  86. C.L. Wang, C.M. Lan, S.H. Hong, Y.F. Wang, T.Y. Pan, C.W. Chang, H.H. Kuo, M.Y. Kuo, W.G. Diau, C.Y. Lin, Enveloping porphyrins for efficient dye-sensitized solar cells. Energy Environ. Sci. 5(5), 6933–6940 (2012). https://doi.org/10.1039/c2ee03308a

    Article  CAS  Google Scholar 

  87. Y. Wu, W. Zhu, Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron- withdrawing units on molecular absorption, energy levels, and photovoltaic performances. Chem. Soc. Rev. 42(5), 2039–2058 (2013). https://doi.org/10.1039/C2CS35346F

    Article  Google Scholar 

  88. C.H. Wu, T.Y. Pan, S.H. Hong, C.L. Wang, H.H. Kuo, Y.Y. Chu, E.W. Diau, C.Y. Lin, A fluorene-modified porphyrin for efficient dye-sensitized solar cells. Chem. Commun. 48(36), 4329–4331 (2012). https://doi.org/10.1039/c2cc30892d

    Article  CAS  Google Scholar 

  89. Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.H. Zhu, Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte. J. Am. Chem. Soc. 137(44), 14055–14058 (2015). https://doi.org/10.1021/jacs.5b09665

    Article  CAS  Google Scholar 

  90. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. Diau, C.Y. Yeh, S. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011). https://doi.org/10.1126/science.1209688

    Article  CAS  Google Scholar 

  91. A. Yella, C.L. Mai, S.M. Zakeeruddin, S.N. Chang, C.H. Hsieh, C.Y. Yeh, M. Grätzel, Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. Angew. Chem. Int. Ed. Engl. 126(11), 3017–3021 (2014). https://doi.org/10.1002/anie.201309343

    Article  CAS  Google Scholar 

  92. L. Yu, K. Muthukumaran, I.V. Sazanovich, C. Kirmaier, E. Hindin, J.R. Diers, P.D. Boyle, D.F. Bocian, D. Holten, J.S. Lindsey, Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening bis(dipyrrinato)metal complex. Inorg. Chem. 42(21), 6629–6647 (2003). https://doi.org/10.1021/ic034559m

    Article  CAS  Google Scholar 

  93. J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73(14), 1991–1993 (1998). https://doi.org/10.1063/1.122345

    Article  CAS  Google Scholar 

  94. W. Zheng, N. Shan, L. Yu, X. Wang, UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77(1), 153–157 (2008). https://doi.org/10.1016/j.dyepig.2007.04.007

    Article  CAS  Google Scholar 

  95. S. Chakraborty, H.-C. You, C.-K. Huang, B.-Z. Lin, C.-L. Wang, M.-C. Tsai, C.-L. Liu, C.-Y. Lin, meso-Diphenylbacteriochlorins: Macrocyclic dyes with rare colors for dye-sensitized solar cells. J Phys Chem C 121(13), 7081–7087 (2017). https://doi.org/10.1021/acs.jpcc.7b00097

Download references

Acknowledgments

HH thanks Department of Chemistry & Biochemistry, Eastern Illinois University, for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, W., Elkhaklifa, M., He, H. (2019). Design, Engineering, and Evaluation of Porphyrins for Dye-Sensitized Solar Cells. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_12

Download citation

Publish with us

Policies and ethics