Skip to main content

Configuration Spaces of Equal Spheres Touching a Given Sphere: The Twelve Spheres Problem

  • Chapter
  • First Online:
New Trends in Intuitive Geometry

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 27))

Abstract

The problem of twelve spheres is to understand, as a function of \(r \in (0,r_{max}(12)]\), the configuration space of 12 non-overlapping equal spheres of radius r touching a central unit sphere. It considers to what extent, and in what fashion, touching spheres can be varied, subject to the constraint of always touching the central sphere. Such constrained motion problems are of interest in physics and materials science, and the problem involves topology and geometry. This paper reviews the history of work on this problem, presents some new results, and formulates some conjectures. It also presents general results on configuration spaces of N spheres of radius r touching a central unit sphere, with emphasis on \(3 \le N \le 14\). The problem of determining the maximal radius \(r_{max}(N)\) is a version of the Tammes problem, to which László Fejes Tóth made significant contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Iam si ad structuram solidorum quam potest fieri arctissimam progredaris, ordinesque ordinibus superponas, in plano prius coaptatos aut ii erunt quadrati A aut trigonici B: si quadrati aut singuli globi ordinis superioris singulis superstabunt ordinis inferioris aut contra singuli ordinis superioris sedebunt inter quaternos ordinis inferioris. Priori modo tangitur quilibit globis a quattuour cirucmstantibus in eodem plano, ab uno supra se, et ab uno infra se: et sic in universum a six aliis, eritque ordo cubicus, et compressione facta fient cubi: sed no erit arctissima coaptatio. Posteriori modo praeterquam quod quileibet globus a quattuor circumstantibus in eodem plano tangitur etiam a quattuor infra se, et a quattuor supra se, et sic in universum a duodecim tangetur; fientque compressione ex globosis rhombica. Ordo hic magis assimilabitur octahedro et pyramidi. Coaptatio fiet arctissima, ut nullo praetera ordine plures globuli in idem vas compingi queant.” [Translation: Colin Hardie [61, p. 15]]

  2. 2.

    “Esto enim B copula trium globorum. Ei superpone A unum pro apice; esto et alia copula senum globorum C, et alia denum D et alia quindenum E. Impone semper angustiorem latiori, ut fiat figura pyramidis. Etsi igitur per hanc impositionem singuli superiores sederunt into trinos inferiores: tamen iam versa figura, ut non apex sed integrum latus pyramidis sit loc superiori, quoties unum globulum deglberis e summis, infra stabunt quattuor ordine quadrato. Et rursum tangetur unus globus ut prius, et duodecim aliis, a sex nempe circumstantibus in eodem plano tribus supra et tribus infra. Ita in solida coaptatione arctissima non potest ess ordo triangularis sine quadrangulari, nec vicissim. Patet igitur, acinos punici mali, materiali necessitate concurrente cum rationaibus incrementi acinorum, exprimi in figuri rhombici corporis...” [Translation by Colin Hardie [61, p. 17]].

  3. 3.

    “Ut noscatur quot sunt stellae magnitudinis 1 ae, 2 dae, 3 ae & c. considerando quot spherae proximae, seundae ab his 3 ae & c. spheram in spatio trium dimensionis circumstent: erunt 13 primae, \(4 \times 13\) 2-dae, \(9 \times 4 \times 13\) 3 ae.”

  4. 4.

    This notebook is at Christ Church, Oxford, according to J. Leech  [66].

  5. 5.

    John Keill (1671–1721) succeeded Gregory as Savilian Professor.

  6. 6.

    This is Kepler [62].

  7. 7.

    Aprés Charles Radin

References

  1. A. Abrams, R. Ghrist, Finding topology in a factory: configuration spaces. Am. Math. Mon. 109(2), 140–150 (2002)

    Article  MathSciNet  Google Scholar 

  2. H. Alpert, Restricting cohomology classes to disk and segment configuration spaces. Topol. Appl. 230, 51–76 (2017)

    Article  MathSciNet  Google Scholar 

  3. P.W. Anderson, Through the glass lightly. Science 267, 1615 (1995)

    Article  Google Scholar 

  4. K. Anstreicher, The thirteen spheres: a new proof. Discret. Comput. Geom. 31, 613–625 (2004)

    Article  MathSciNet  Google Scholar 

  5. C. Austin, Angell, Insights into phases of liquid water from study of its unusual glass-forming properties. Science 1(319), 582–587 (2008)

    Google Scholar 

  6. V.I. Arnold, The cohomology ring of dyed braids, (Russian) Mat. Zametki 5, 227–231 (1969)

    Google Scholar 

  7. T. Aste, D. Weaire, The Pursuit of Perfect Packing (Institute of Physics Publishing, London, 2000)

    MATH  Google Scholar 

  8. W. Barlow, Probable nature of the internal symmetry of crystals. Nature 29(186–188), 205–207 (1883)

    Article  Google Scholar 

  9. Y. Baryshnikov, P. Bubenik, M. Kahle, Min-type Morse theory for configuration spaces of hard spheres. Int. Math. Res. Not. IMRN 2014(9), 2577–2592 (2014)

    Article  MathSciNet  Google Scholar 

  10. C. Bender, Bestimmung der grössten Anzahl gleich grosser Kugeln, welche sich auf eine Kugel von demselben Radius, wie die übrigen, auflegen lassen. Acrhiv der Mathematik und Physik 56, 302–306 (1874)

    MATH  Google Scholar 

  11. K. Böröczky, The problem of Tammes for \(n=11\). Studia Sci. Math. Hung. 18(2–4), 165–171 (1983)

    MathSciNet  MATH  Google Scholar 

  12. K. Böröczky, L. Szabó, Arrangements of \(13\) Points on a Sphere, in by A, ed. by Discrete Geometry (Marcel Dekker, Bezdek (New York, 2003), pp. 111–184

    MATH  Google Scholar 

  13. K. Böröczky, L. Szabó, Arrangements of \(14, 15, 16\) and \(17\) Points on a Sphere. Studi. Sci. Math. Hung. 40, 407–421 (2003)

    MathSciNet  MATH  Google Scholar 

  14. J. Cantarella, J.H. Fu, R. Kusner, J.M. Sullivan, N.C. Wrinkle, Criticality for the Gehring link problem. Geom. Topol. 10, 2055–2116 (2006)

    Article  MathSciNet  Google Scholar 

  15. G. Carlsson, J. Gorham, M. Kahle, J. Mason, Computational topology for configuration spaces of hard disks. Phys. Rev. E 85, 011303 (2012)

    Article  Google Scholar 

  16. F.R. Cohen, Artin’s braid groups, classical homotopy theory, and sundry other curiosities, 167–206, in Braids, Contemporary Mathematics, vol. 78 (American Mathatical Society, 1988)

    Google Scholar 

  17. F.R. Cohen, Introduction to Configuration Spaces and Their Applications. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 19 (World Scientific Publishing, Hackensack, 2010)

    Chapter  Google Scholar 

  18. H. Cohn, Y. Jian, A. Kumar, S. Torquato, Rigidity of spherical codes. Geom. Topol. 15, 2235–2273 (2011)

    Article  MathSciNet  Google Scholar 

  19. R. Connelly, Rigidity of packings. Eur. J. Comb. 29(8), 1862–1871 (2008)

    Article  MathSciNet  Google Scholar 

  20. J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd edn. (Springer, New York, 1998). (First Edition: 1988)

    Google Scholar 

  21. H.S.M. Coxeter, The problem of packing a number of equal non-overlapping circles on a sphere. Trans. New York Acad. Sci. Ser. II(24), 220–231 (1962)

    Google Scholar 

  22. L. Danzer, Endliche Punktmengen auf der 2-Sphäre mit möglichst grossen Minimalabstand, Habilitationsschrift (University of Göttingen, Göttingen, 1963)

    Google Scholar 

  23. L. Danzer, Finite point-sets on \({\bf S}^2\) with minimum distance as large as possible. Discret. Math. 60, 3–66 (1986). [English translation of Danzer Habilitationsschrift, with extra references added.]

    Google Scholar 

  24. D.M. Dennison, The crystal structure of ice. Phys. Rev. 17, 20–22 (1921). (Science 24 Sept. 1920 52(1343), 296–297)

    Article  Google Scholar 

  25. A. Donev, S. Torquato, F.H. Stillinger, R. Connelly, Jamming in hard sphere and hard disk packings. J. Appl. Phys. 95(3), 989–999 (2004)

    Article  Google Scholar 

  26. M.D. Ediger, C.A. Angell, S.R. Nagel, Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996)

    Article  Google Scholar 

  27. A.C. Edmondson, A Fuller Explanation: The Synergetic Geometry of R (Buckminster Fuller, Birkhäuser, Boston, 1987)

    Book  Google Scholar 

  28. E.R. Fadell, Homotopy groups of configuration spaces and the string problem of Dirac. Duke Math. J. 29, 231–242 (1962)

    Article  MathSciNet  Google Scholar 

  29. E.R. Fadell, S.Y. Husseini, Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics (Springer, Berlin, 2001)

    Book  Google Scholar 

  30. E.R. Fadell, L. Newirth, Configuration spaces. Math. Scand. 10, 111–118 (1962)

    Article  MathSciNet  Google Scholar 

  31. M. Farber, Invitation to Topological Robotics, Zürich Lectures in Advanced Mathematics (European Mathematical Society, Switzerland, 2008)

    Book  Google Scholar 

  32. E.M. Feichtner, G.M. Ziegler, The integral cohomology algebras of ordered configuration spaces of spheres. Doc. Math. 5, 115–139 (2000)

    MathSciNet  MATH  Google Scholar 

  33. L. Fejes Tóth, Über die Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfäches liegenden Punktsystems. Jber. Deutsch. Math. Verein. 53, 66–68 (1943)

    Google Scholar 

  34. L. Fejes, Tóth, Über die dichteste Kugellagerung. Math. Z. 48, 676–684 (1943)

    Google Scholar 

  35. L. Fejes, Tóth, On the densest packing of spherical caps. Am. Math. Mon. 56, 330–331 (1949)

    Article  Google Scholar 

  36. L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und in Raum (Springer, Berlin, 1953). (2nd edn. 1972)

    Google Scholar 

  37. L. Fejes Tóth, Kugelunterdeckungen und Kugelüberdeckungen in Räumen konstanter Krümmung. Archiv der Math. 10, 307–313 (1959)

    Google Scholar 

  38. L. Fejes Tóth, Eräitä “kauniita” extremaalikuvioita, (Finnish) [On some “nice” extremal figures] Arkhimedes 1959(2), 1–10 (1959)

    Google Scholar 

  39. L. Fejes, Tóth, Remarks on a theorem of R. M. Robinson. Studia Scientiarum Mathematicarum Hungarica 4, 441–445 (1969)

    MATH  Google Scholar 

  40. F.C. Frank, Supercooling of liquids. Proc. R. Soc. Lond. A Math. Phys. Sci. 215, 43–46 (1952)

    Google Scholar 

  41. D.B. Fuks, Cohomologies of the braid group mod \(2\). Funct. Anal. Appl. 4, 143–151 (1970)

    Article  Google Scholar 

  42. R.B. Fuller, Synergetics: The Geometry of Thinking (Macmillan, New York, 1976)

    Google Scholar 

  43. V. Gershkovich, H. Rubinstein, Morse theory for Min-type functions. Asian J. Math. 1(4), 696–715 (1997)

    Article  MathSciNet  Google Scholar 

  44. M. Goresky, R. MacPherson, Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgeiete 14 (Springer, Berlin, 1988)

    Google Scholar 

  45. R.L. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation For Computer Science (Addison-Wesley, Reading, 1994)

    Google Scholar 

  46. D. Gregory, The Elements of Astronomy, Physical and Geometrical. Done into English, with Additions and Corrections. To which is annex’d Dr. Halley’s Synopsis of the Astronomy of Comets. In Two Volumes, Printed for John Morphew near Stationers Hall: London MDCCXV

    Google Scholar 

  47. S. Günther, Ein sterometrisches problem. Archiv Math. Physik (Grunert) 57, 209–215 (1875)

    Google Scholar 

  48. W. Habicht, B.L. van der Waerden, Lagerungen von Punkten auf der Kugel. Math. Ann. 123, 223–234 (1951)

    Article  MathSciNet  Google Scholar 

  49. T. Hales, The status of the Kepler conjecture. Math. Intell. 16, 47–58 (1994)

    Article  MathSciNet  Google Scholar 

  50. T. Hales, The strong dodecahedral conjecture and Fejes Tóth’s conjecture on sphere packings with kissing number twelve, pp. 121–132 in: Discrete Geometry and Optimization, (K. Bezdek, A. Deza, Y. Ye, eds.) Fields Inst. Commun. 69: Fields Institute, Toronto (2013)

    Google Scholar 

  51. T. Hales et. al., M. Adams, G. Bauer, Dat Tat Dang, T. Harrison, Truong Le Hoang, C. Kaliszk, V. Magron, S. McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, J. Urban, Ky Khac Vu, R. Zumkeller, A Formal Proof of the Kepler Conjecture, arXiv:1501.02155

  52. T. Hales, S. McLaughlin, The dodecahedral conjecture. J. Am. Math. Soc. 23(2), 299–344 (2010)

    Article  MathSciNet  Google Scholar 

  53. T. Hariot, A Briefe and True Report of the New Found Land of Virginia (Frankfort, Johannis Wecheli, 1590)

    Google Scholar 

  54. L. Hárs, The Tammes problem for \(n=10\). Studia Sci. Math. Hungar. 21(3–4), 439–451 (1986)

    MathSciNet  MATH  Google Scholar 

  55. N.J. Hicks, Notes on Differential Geometry (Van Nostrand Co Inc, Princeton, 1965)

    MATH  Google Scholar 

  56. W.G. Hiscock (ed), David Gregory, Isaac Newton and the Circle. Extracts from David Gregory’s Memoranda 1677–1708 (Oxford, Printed for the Editor 1937)

    Google Scholar 

  57. M. Holmes-Cerfon, Enumerating rigid sphere packings. SIAM Rev. 58(2), 229–244 (2016)

    Article  MathSciNet  Google Scholar 

  58. R. Hoppe, Bemerkung der Redaktion. Archiv der Mathematik und Physik (Grunert) 56, 307–312 (1874)

    Google Scholar 

  59. M.A. Hoskin, Newton, providence and the universe of stars. J. Hist. Astron. (JHA) 8, 77–101 (1977)

    Article  Google Scholar 

  60. R.H. Kargon, Atomism in England from Hariot to Newton (Clarendon Press, Oxford, 1966)

    MATH  Google Scholar 

  61. J. Kepler, Strena seu de nive Sexangula, Frankfurt, Jos. Tampach 1611. Translation as: The Six-Cornered Snowflake: A New Year’s Gift (Colin Hardie, Translator) (Clarendon Press, Oxford, 1966)

    Google Scholar 

  62. J. Kepler, Epitome Astronomiae Copernicae, usitatâ formâ Quaestionum & Responsionum conscripta, inq; VII. Libros digesta, quorum TRES hi priores sunt de Doctrina Sphaericâ , Lentijs ad Danubium, excudebat Johannes Plancus, MDCXVIII

    Google Scholar 

  63. A. Koyré, From the Closed World to the Infinite Universe (The Johns Hopkins Press, Baltimore, 1957)

    Google Scholar 

  64. R. Kusner, W. Kusner, J.C. Lagarias, S. Shlosman, Max-min Morse Theory for Configurations on the 2-Sphere, Paper in Preparation

    Google Scholar 

  65. J.C. Lagarias (ed) The Kepler Conjecture: The Hales-Ferguson Proof, by Thomas C. Hales, Samuel P. Ferguson (Springer, New York, 2011)

    Google Scholar 

  66. J. Leech, The problem of the thirteen spheres. Math. Gaz. 40, 22–23 (1956)

    Article  MathSciNet  Google Scholar 

  67. A.J. Liu, S.R. Nagel, The jamming transition and the marginally jammed solid. Ann. Rev. Condens. Matter Phys. 1, 347–369 (2010)

    Article  Google Scholar 

  68. H. Löwen, Fun with hard spheres, in Statistical Physics and Spatial Statistics (Wuppertal, 1999). Lecture Notes in Physics, vol. 554 (Springer, Berlin, 2000), pp. 295–331

    Google Scholar 

  69. B. Lubachevsky, R.L. Graham, Dense packings of \(3k(3k+1) +1\) equal disks, in a circle for\(k=1,2,3, 4,\)and 5, in Computing and Combinatorics, First Annual Conference, COCOON ’95, Lecture Notes in Computer Science, ed. by Du Ding-Zhu, Ming Li, vol. 959, (Springer, New York, 1995), pp. 302–311

    Google Scholar 

  70. B. Lubachevsky, F.H. Stillinger, Geometric properties of hard disk packings. J. Stat. Phys. 60(5–6), 561–583 (1990)

    Google Scholar 

  71. H. Maehara, Isoperimetric problem for spherical polygons and the problem of \(13\) spheres. Ryukyu Math. J. 14, 41–57 (2001)

    MathSciNet  MATH  Google Scholar 

  72. H. Maehara, The problem of thirteen spheres-a proof for undergraduates. Eur. J. Combin. 28, 1770–1778 (2007)

    Article  MathSciNet  Google Scholar 

  73. T.W. Melnyk, O. Knop, W.R. Smith, Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited. Canad. J. Chem. 55, 1745–1761 (1977)

    Article  MathSciNet  Google Scholar 

  74. J. Milnor, Morse Theory. Based on Lecture Notes by M. Spivak, R. Wells. Annals of Mathematics Studies vol. 51 (Princeton University Press, Princeton, 1963)

    Google Scholar 

  75. O. Musin, The kissing problem in three dimensions. Discret. Comput. Geom. 35, 375–384 (2006)

    Article  MathSciNet  Google Scholar 

  76. O. Musin, A.S. Tarasov, The strong thirteen spheres problem. Discret. Comput. Geom. 48(1), 128–141 (2012)

    Article  MathSciNet  Google Scholar 

  77. O. Musin, A.S. Tarasov, Enumerations of irreducible contact graphs on the sphere. Fundam. Prikl. Mat. 18(2), 125–145 (2013)

    Google Scholar 

  78. O. Musin, A.S. Tarasov, The Tammes problem for \(N=14\). Exper. Math. 24, 460–468 (2015)

    Article  MathSciNet  Google Scholar 

  79. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003)

    Article  Google Scholar 

  80. I. Newton, The Correspondence of Isaac Newton, ed. by H.W. Turnbull, J.F. Scott, vol. 9 (Cambridge University Press, Cambridge, 1961)

    Google Scholar 

  81. L. Pauling, The structure and entropy of ice and other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

    Article  Google Scholar 

  82. C.L. Phillips, E. Jankowski, M. Marval, S.C. Glotzer, Self-assembled clusters of spheres related to spherical codes. Phys. Rev. E 86, 041124 (2012)

    Article  Google Scholar 

  83. C.L. Phillips, E. Jankowski, B.J. Krishnatreya, K.V. Edmond, S. Sacanna, D.G. Grier, D.J. Pine, S.C. Glotzer, Digital colloids: reconfigurable clusters as high information density elements. Soft Matter 10, 7468–7479 (2014)

    Article  Google Scholar 

  84. A. Postnikov, R. Stanley, Deformations of Coxeter hyperplane arrangements. In memory of Gian-Carlo Rota. J. Comb Theory Ser. A 91(1–2), 544–597 (2000)

    Article  MathSciNet  Google Scholar 

  85. R.M. Robinson, Arrangements of \(24\) points on a sphere. Math. Ann. 144, 17–48 (1961)

    Article  MathSciNet  Google Scholar 

  86. R.M. Robinson, Finite sets of points on a sphere with each nearest to five others. Math. Ann. 179, 296–318 (1969)

    Article  MathSciNet  Google Scholar 

  87. K. Schütte, B.L. van der Waerden, Auf welcher Kugel haben \(5, 6, 7, 8\) oder \(9\) Punkte mit Mindestabstand \(1\) Platz? Math. Ann. 123, 96–124 (1951)

    Article  MathSciNet  Google Scholar 

  88. K. Schütte, B.L. van der Waerden, Das problem der dreizehn Kugeln. Math. Ann. 125, 325–334 (1953)

    Article  MathSciNet  Google Scholar 

  89. C. Schwabe, Eureka and Serendipity: The Rudolf van Laban Icosahedron and Buckminster Fuller’s Jitterbug, Bridges, Mathematics. Music, Art, Architecture, Culture 2010, 271–278 (2010)

    Google Scholar 

  90. G.D. Scott, D.M. Kilgour, The density of random close packing of spheres. Brit. J. Appl. Phys. (J. Phys. D) 2, 863–866 (1969)

    Article  Google Scholar 

  91. J.W. Shirley, Thomas Hariot: A Biography (Clarendon Press, Oxford, 1983)

    Google Scholar 

  92. P.M.L. Tammes, On the origin of number and arrangement of the places of exit on the surface of pollen-grains. Recueil des travaux botaniques néerlandais 27, 1–84 (1930)

    Google Scholar 

  93. T. Tarnai, Zs. Gáspár, Improved packing of equal circles on a sphere and rigidity of its graph. Math. Proc. Camb. Phil. Soc. 93, 191–218 (1983)

    Article  Google Scholar 

  94. T. Tarnai, Zs. Gáspár, Arrangements of \(23\) points on a sphere (on a conjecture of R.M. Robinson). Proc. R. Soc. Lond. Ser. A 433, 257–267 (1991)

    Google Scholar 

  95. S. Torquato, F. Stillinger, Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev. Mod. Phys. 82, 2633–2672 (2010)

    Article  Google Scholar 

  96. B. Totaro, Configuration spaces of algebraic varieties. Topology 35(4), 1057–1067 (1996)

    Article  MathSciNet  Google Scholar 

  97. H. Verheyen, The complete set of jitterbug transformers and the analysis of their motion, symmetry 2: unifying human understanding. Comput. Math. Appl. 17(1–3), 203–250 (1989)

    Article  MathSciNet  Google Scholar 

  98. H. Whitney, Tangents to an analytic variety. Ann. Math. 81, 496–549 (1964)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were each supported by ICERM in the Spring 2015 program on “Phase Transitions and Emergent Properties.” R. K. was also supported by the University of Pennsylvania Mathematics Department sabbatical visitor fund and by MSRI via NSF grant DMS-1440140. W. K. was also supported by Austrian Science Fund (FWF) Project 5503. J. L. was supported by NSF grant DMS-1401224 and by a Clay Senior Fellowship at ICERM. Part of the work of S. S. has been carried out in the framework of the Labex Archimede (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government programme managed by the French National Research Agency (ANR). Part of the work of S. S. has been carried out at IITP RAS. The support of Russian Foundation for Sciences (Project No. 14-50-00150) is gratefully acknowledged. The authors thank Bob Connelly, Sharon Glotzer, Mark Goresky, Tom Hales and Oleg Musin for helpful comments. Parts of Sect. 4.1 are adapted from unpublished notes by R. K. and John Sullivan (MSRI, 1994) about critical configurations of “electrons” on the sphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Kusner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusner, R., Kusner, W., Lagarias, J.C., Shlosman, S. (2018). Configuration Spaces of Equal Spheres Touching a Given Sphere: The Twelve Spheres Problem. In: Ambrus, G., Bárány, I., Böröczky, K., Fejes Tóth, G., Pach, J. (eds) New Trends in Intuitive Geometry. Bolyai Society Mathematical Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57413-3_10

Download citation

Publish with us

Policies and ethics