Skip to main content

Kinetische Modellierung in der Chemischen Reaktionstechnik

  • Living reference work entry
  • First Online:
Handbuch Chemische Reaktoren

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Zusammenfassung

Für die Entwicklung und Optimierung verfahrenstechnischer Anlagen in der stoffwandelnden Industrie stellt die kinetische Modellierung bei der quantitativen Beschreibung des zeitlichen Ablaufes komplexer Reaktionen ein unabdingbares Hilfsmittel dar. Die klassischen Modellberechnungen basieren in der Regel auf dem „besten“ experimentellen Wert und werden durch das Experimentieren am Modell unter Anwendung computergestützter Methoden ergänzt. Gegenwärtig rückt der Einsatz nichtklassischer Lösungsmethoden zur kinetischen Auswertung chemischer Reaktionen in den Mittelpunkt des wissenschaftlichen und praktischen Interesses. Diese sind darauf gerichtet, redundanzfreie Modellstrukturen komplexer Reaktionssysteme mithilfe der Intervall- und Sensitivitätsanalyse kinetischer Modellparameter zu formulieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Aho, K., Derryberry, D., Peterson, T.: Model selection for ecologists: the world-views of AIC and BIC. Ecology 95, 631–636 (2014)

    Article  Google Scholar 

  • Akaike, H.: A new look at a statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  Google Scholar 

  • Anderson, V.L., McLean, R.A.: Design of Experiments: A Realistic Approach. CRC Press, Marcel Dekker, New York (1974)

    Google Scholar 

  • Backhaus, K., Erichson, B., Plinke, W., Weiber, R.: Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, 14. Aufl. Springer, Berlin/Heidelberg (2018)

    Book  Google Scholar 

  • Beecher, R., Voorhies, A.: Hexane isomerization over a zeolite catalysts. Ind. Eng. Chem. Prod. Res. Develop. 8, 366–371 (1969)

    Article  CAS  Google Scholar 

  • Bodenstein, M.: Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z. Phys. Chem. 85, 390–421 (1913)

    Google Scholar 

  • Bojarinov, A.I., Kafarov, V.V.: Optimierungsmethoden in der chemischen Technologie. Alademie-Verlag, Berlin (1972)

    Google Scholar 

  • Borovinskaya, E.: New approach for the non-redundant modeling of complex chemical reactions. Chem. Ing. Tech. 90, 666–672 (2018a)

    Article  CAS  Google Scholar 

  • Borovinskaya, E.: Redundanzfreie Modelle zur mathematischen Beschreibung von komplexen Reaktionssystemen, Habilitationsschrift, TU Dresden (2018b)

    Google Scholar 

  • Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York (2002)

    Google Scholar 

  • Campolongo, F., Saltelli, A., Cariboni, J.: From screening to quantitative sensitivity analysis. A unified approach. Comput. Phys. Commun. 182, 978–988 (2011)

    Article  CAS  Google Scholar 

  • Corma, A., Martinez, A., Pergher, S., Peratello, S., Perego, C., Bellusi, G.: Appl. Cat. A152, 107–125 (1997)

    Article  Google Scholar 

  • Davies, O.L.: The Design and Analysis of Industrial Experiments. Oliver and Boyd/Hafner Publishing Copany, London/Edinburgh (1960)

    Google Scholar 

  • Davis, M.E., Davis, R.J.: Fundamentals of Chemical Reaction Engineering. McGraw-Hill Higher Education, New York (2003)

    Google Scholar 

  • Douglas, M.B., David, C.H., Donald, G.W.: Calculation of intrinsic and parameter-effects curvatures for nonlinear regression models. Commun. Stat. Simul. Comput. 12, 469–477 (1983)

    Article  Google Scholar 

  • Dutta, S.: Optimization in Chemical Engineering. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  • Gelfand, I.M., Tsetlin, M.L.: The principle of nonlocal search in automatic optimization systems. Dokl. Akad. Nauk SSSR. 137, 295–298 (1961)

    Google Scholar 

  • Hartley, H.O.: The modified Gauss-Newton method for fitting of nonlinear regression functions by least squares. Technometrics 3, 269–280 (1961)

    Article  Google Scholar 

  • Нinshelwood, C.N.: The Structure of Physical Chemistry. Oxford University Press, Oxford (2005)

    Google Scholar 

  • Hwang, J.T., Dougherty, E.P., Rabitz, S., Rabitz, H.: The green’s function method of sensitivity analysis in chemical kinetics. J. Chem. Phys. 69, 5180–5191 (1978)

    Article  CAS  Google Scholar 

  • Ioffe, I.I., Pis’men, L.M.: Heterogene Katalyse: Chemie u. Technik. Akademie-Verlag, Berlin (1975)

    Google Scholar 

  • Kafarov, V.V.: Cybernetic Methods in Chemistry and Chemical Engineering. Verlag Mir, Moscow (1976)

    Google Scholar 

  • Letts, R.W.M.: Determination of chemical kinetics for multiple reaction systems. Can. J. Chem. Eng. 42, 56–60 (1964)

    Article  CAS  Google Scholar 

  • Li, J., Rhinehart, R.R.: Heuristic random optimization. Computers & Chemical Engineering 22, 427–444 (1998)

    Article  CAS  Google Scholar 

  • Marin, G.B., Yablonsky, G.S.: Kinetics of Chemical Reactions: Decoding Complexity. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  • Matros, J.S.: Mathematical modeling of chemical reactors – development and implementation of novel technologies. Angewandte Chemie 29, 1235–1245 (1990)

    Article  Google Scholar 

  • Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)

    Article  Google Scholar 

  • Nauman, E.B.: Chemical Reactor Design, Optimization, and Scale Up. Wiley, Hoboken (2008)

    Book  Google Scholar 

  • Neittaanmäki, P., Repin, S., Tuovinen, T. (Hrsg.): Mathematical Modeling and Optimization of Complex Structures. Springer International Publishing, Chem (2016)

    Google Scholar 

  • Ostrovsky, G.M., Ziyatdinov, N.N., Lapteva, T.V.: Optimal design of chemical processes with chance constraints. Comput. Chem. Eng. 59, 74–88 (2013)

    Article  CAS  Google Scholar 

  • Oussaeif, T.-E., Bouziani, A.: Inverse problem of a hyperbolic equation with an integral overdetermination conditions. Electron. J. Differ. Equ. 138, 1–7 (2016)

    Google Scholar 

  • Pahl, P.J., Damrath, R.: Mathematical Foundations of Computational Engineering: A Handbook. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  • Polak, L.S. (Hrsg.): Application of Computational Mathematics in Chemical and Physical Kinetics. Nauka, Moscow (1969)

    Google Scholar 

  • Polak, E.: Computational Methods in Optimization: A Unified Approach. Academic Press, New York (1971)

    Google Scholar 

  • Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, New York (1997)

    Book  Google Scholar 

  • Rabitz, H., Kramer, M., Dacol, D.: Sensitivity analysis in chemical kinetics. Annu. Rev. Phys. Chem. 10, 419–461 (1983)

    Article  Google Scholar 

  • Reschetilowski, W.: Katalytische Eigenschaften bifunktioneller Metall/Zeolith-Katalysatoren in nichtoxidativen Kohlenwasserstoffumwandlungsreaktionen, TH Leuna-Merseburg, Merseburg (1987)

    Google Scholar 

  • Reyniers, M.F., Marin, G.B.: Experimental and theoretical methods in kinetic studies of heterogeneously catalyzed reactions. Annu. Rev. Chem. Biomol. Eng. 5, 563–594 (2014)

    Article  CAS  Google Scholar 

  • Rocha, A., Correia, A.M., Adeli, H., Reis, L.P., Teixeira, M.M. (Hrsg.): New Advances in Information Systems and Technologies. Springer International Publishing, Cham (2016)

    Google Scholar 

  • Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3, 175–184 (1960)

    Article  Google Scholar 

  • Rubin, D.I.: Nonlinear least squares parameter estimation and its application to chemical kinetics. Chem. Eng. Progress/Symposium Ser. 59, 90–94 (1963)

    Google Scholar 

  • Rüfer, A.: Untersuchungen zur Isomerisierung von n-Decan an mesoporösen, bifunktionellen Katalysatoren unter Verwendung versuchsplanerischer Methoden, Dissertation, TU Dresden (2012)

    Google Scholar 

  • Rüfer, A., Reschetilowski, W.: Application of design of experiments in heterogeneous catalysis: using the isomerization of n-decane for a parameter screening. Chem. Eng. Sci. 75, 364–375 (2012)

    Article  Google Scholar 

  • Rüfer, A., Werner, A., Reschetilowski, W.: A study on the bifunctional isomerization of n-decane using a superior combination of design of experiments and kinetic modeling. Chem. Eng. Sci. 87, 160–172 (2013)

    Article  Google Scholar 

  • Saltelli, A.S., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis Practice: A Guide to Assessing Scientific Models. Wiley, London (2004)

    Google Scholar 

  • Saltelli, A.S., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis practices: strategies for model-based inference. Reliab. Eng. Syst. Saf. 91, 1109–1125 (2006)

    Article  Google Scholar 

  • Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270 (2010)

    Article  CAS  Google Scholar 

  • Schwarz, G.E.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  Google Scholar 

  • Severance, F.L.: System Modeling and Simulation: An Introduction. Wiley, Chichester (2001)

    Google Scholar 

  • Siebertz, K., van Bebber, D., Hochkirchen, T.: Statistische Versuchsplanung: Design of Experiments (DoE). Springer, Berlin (2010)

    Chapter  Google Scholar 

  • Strutz, T.: Data Fitting and Uncertainty (A Practical Introduction to Weighted Least Squares and Beyond), 2. Aufl. Springer, Wiesbaden (2016)

    Google Scholar 

  • Sugiura, N.: Further analysis of the data by Akaike’s information criterion and finite corrections. Commun. Stat. Theory Methods 9, 13–26 (1978)

    Article  Google Scholar 

  • Tikhonov, A.N.: The stability of algorithms for the solution of degenerate systems of linear algebraic equations. USSR Comput. Math. Math. Phys. 5, 181–188 (1965)

    Article  Google Scholar 

  • Turányi, T., Tomlin, A.S.: Analysis of Kinetic Reaction Mechanisms. Springer, Berlin/Heidelberg (2014)

    Book  Google Scholar 

  • Uvarova, L., Latyshev, A.V. (Hrsg.): Mathematical Modeling: Problems, Methods, Applications. Springer, Boston (2001)

    Google Scholar 

  • Velten, K.: Mathematical modeling and simulation: introduction for scientists and engineers. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  • Vrieze, S.I.: Model selection and phychological theory: a discussion of differences between the Akaike Information Criterion (AIC) and the Bayesian Information criterion (BIC). Psychol. Methods 17, 228–243 (2012)

    Article  Google Scholar 

  • Weissman, S.A., Anderson, N.G.: Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications. Org. Process Res. Dev. 19, 1605–1633 (2015)

    Article  CAS  Google Scholar 

  • Wilde, D.J.: Globally Optimal Design. Wiley, New York (1978)

    Google Scholar 

  • Wojciechowski, B., Rice, N.: Experimental Methods in Kinetic Studies. Elsevier, Amsterdam/Boston (2003)

    Google Scholar 

  • Yang, Y.: Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrica 92, 937–950 (2005)

    Article  Google Scholar 

  • Yang, C.M., Beck, J.L.: Generalized trajectory methods for finding multiple extrema and roots of functions. J. Optim. Theory Appl. 97, 211–227 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Borovinskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Borovinskaya, E. (2019). Kinetische Modellierung in der Chemischen Reaktionstechnik. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56444-8_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56444-8

  • Online ISBN: 978-3-662-56444-8

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics