Skip to main content

Physiologie der mittleren, großen und extremen Höhen

  • Chapter
Alpin- und Höhenmedizin

Zusammenfassung

Alpinistik und damit verbundene unterschiedliche Belastungsprofile stellen unter den atmosphärischen sowie klimatischen Umgebungsbedingungen eine besondere Herausforderung an das respiratorische System dar. Um der Gewebehypoxie unter Höhenbedingungen erfolgreich zu begegnen, bedarf es eines komplexen Zusammenspiels einer Reihe physiologischer regulativer Mechanismen. Eine ausreichende Funktion peripherer Chemorezeptoren (Hypoxiesensing/Glomus caroticum und Glomus aorticum) stellt dabei die Basis für eine adäquate ventilatorische Hypoxieantwort („hypoxic ventilatory response“ [HVR]) in der Höhe dar. Die Fähigkeit zu alveolärer Hyperventilation ist sehr individuell und entspricht vermutlich einer angeborenen Eigenschaft zur Hypoxieanpassung. Eine hohe HVR ist in mittleren und großen Höhen von Vorteil, in extremen Höhen führt diese jedoch zu einem rasch progressiv abnehmenden Effizienzgrad der Atmung. Die respiratorische Funktion in großen und extremen Höhen stellt letztendlich den allein leistungslimitierenden Faktor gegenüber der Kreislauflimitierung auf Normalhöhe dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Astin TW, Penman RWB (1967) Airways obstruction due to hypoxemia in patients with chronic lung disease. Am Rev Resp Dis 95(4):567–575

    Google Scholar 

  • Astrom K, Cohen JE, Willett-Brozick JE, Aston CE, Baysal BE (2003) Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygensensing defect. Hum Genet 113(3): 228–237

    Google Scholar 

  • Balaban DY, Duffin J, Preiss D, Mardimae A, Vesely A, Stessarev M, Zubieta-Calleja GR, Greene ER, Macleod DB, Fisher JA (2013) The in-vivo oxyhaemoglobin dissociation curve at sea level and high altitude. Respir Physiol Neurobiol 186(1):45–52

    Article  CAS  Google Scholar 

  • Buskirk ER, Kollas J, Akers RF, Prokop EK, Reategui EP (1967) Maximum performance at altitude and return from altitude in conditioned runners. J Appl Physiol 23:259–266

    Google Scholar 

  • Chen J, He L, Dinger B, Stensaas L, Fidone S (2002) Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 282(6):L1314–1323

    Article  CAS  Google Scholar 

  • Chen J, He L, Liu X, Dinger B, Stensaas L, Fidone S (2007) Effect of endothelin receptor antagonist bosentan on chronic hypoxia-induced morphological and physiological changes in rat carotid body. Am J Physiol Lung Cell Mol Physiol 292(5):L1257–1262

    Article  CAS  Google Scholar 

  • Coe C, Pride NB (1993) Effects of correcting arterial hypoxaemia and respiratory resistance in patients with chronic obstructive pulmonary disease. Clin Sci 84(3):325–329

    Article  CAS  Google Scholar 

  • Cogo A, Legnani D, Allegra L (1997) Respiratory function at different altitudes. Respiration 64(6):416–421

    Article  CAS  Google Scholar 

  • Domej W, Schwaberger G, Trapp M et al (2010) Carotid body, O2-reception and paraganglioma at high altitude. In: Sumann G, Schobersberger W, Burtscher M (Hrsg) Alpinmedizinisches Jahrbuch 13. Österreichische Gesellschaft für Alpin- und Höhenmedizin, Innsbruck, S 105–114

    Google Scholar 

  • Fowles RE, Hultgren HN (1983) Left ventricular function at high altitude examined by systolic time intervals and M-mode echocardiography. Am J Cardiol 52(7):862–866

    Article  CAS  Google Scholar 

  • Giardina B, Mosca D, De Rosa MC (2004) The Bohr effect of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements. Acta Physiol Scand 182(3):229–244

    Google Scholar 

  • Goldenberg F, Richalet JP, Onnen I, Antezana AM (1992) Sleep apneas and high altitude newcomers. Int J Sports Med 13 (Suppl 1):S34–36

    Article  Google Scholar 

  • Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE, Caudwell Xtreme Everest Research Group (2009) Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 360(2):140–149

    Article  CAS  Google Scholar 

  • Hartmann B, Unger M, Debelic M, Hilpert P (1974) Blutgaswerte und Atemwegswiderstand bei Gesunden und Patienten mit obstruktiven Atemwegserkrankungen vor und nach Höhenadaptation. Respiration 31(1):7–20

    Article  CAS  Google Scholar 

  • He L, Chen J, Dinger B, Stensaas L, Fidone S (2006) Effect of chronic hypoxia on prurinergic synaptic transmission in rat carotid body. J Appl Physiol 100(1):157–162

    Article  CAS  Google Scholar 

  • Heath D, Williams DR (1989) High-altitude medicine and pathology. Butterworths, London, S 35

    Google Scholar 

  • Heincke K, Prommer N, Cajigal J (2003) Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume, and elevated plasma levels in man. Eur J Appl Physiol 88(6):535–555

    Article  CAS  Google Scholar 

  • Hess W (1987) Affinity of oxygen for hemoglobin – it’s significance under physiological and pathological conditions. Anaesthesist 36(9):455–467

    Google Scholar 

  • Hildebrandt W, Alexander S, Bärtsch P, Draöge W (2002) Effect of N-acetyl-cysteine on the hypoxic ventilarory response and erythropoetin production: linkage between plasma thiol redox state and O2-chemosensitivity. Blood 99(5):1552–1556

    Article  CAS  Google Scholar 

  • Jaeger JJ, Sylvester JT, Cymermann A, Berberich JJ, Denniston JC, Maher JT (1979) Evidence for increased intrathoracic fluid volume in man of high altitude. J Appl Physiol 47(4):670–676

    Article  CAS  Google Scholar 

  • Joseph V, Pequignot JM (2009) Breathing at high altitude. Cell Mol Life Sci 66(22):3565–3573

    Article  CAS  Google Scholar 

  • Katayama K, Fujita H, Sato K, Ishida K, Iwasaki K, Miyamura M (2005) Effect of a repeated series of intermittent hypoxic exposures on ventilatory response in humans. High Alt Med Biol 6(1):50–59

    Article  Google Scholar 

  • Konietzko N, Matthys H (1976) Kardiopulmonale Adaptation an akute Hypoxie. Klin Wochenschr 54(24):1161–1167

    Article  CAS  Google Scholar 

  • Kwasiborski PJ, Kowalczyk P, Zielinski J, Przybylski J, Cwetsch A (2010) Role of hemoglobin affinity to oxygen in adaptation to hypoxemia. Pol Merkur Lekarski 28(166):260–264

    Google Scholar 

  • Levitzky MG (1998) Pulmonary physiology, 4. Aufl. McGraw-Hill, New York, S 232–238

    Google Scholar 

  • Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C (1988) Chemotransduction in the carotid body: K+ current modulated by pO2 in type I chemoreceptor cells. Science 241(4865):580–582

    Article  CAS  Google Scholar 

  • Mairbäurl H, Humpeler E, Schwaberger G, Pessenhofer H (1983) Training-dependent changes of red cell density and erythrocytic oxygen transport. J Appl Physiol Respir Environ Exer Physiol 55(5): 1403–1407

    Article  CAS  Google Scholar 

  • Marugg D (1995) Lung problems in acute to subacute exposure to medium altitudes. Praxis (Bern 1994): 84(40):1101–1107

    Google Scholar 

  • Mazzeo RS, Wolfel EE, Butterfield GE, Reeves JT (1994) Sympathetic response during 21 days at high altitude (4,300 m) as determined by urinary and arterial catecholamines. Metabolism 43(40):1226–1232

    Article  CAS  Google Scholar 

  • Mirrakhimov MM, Kalko TF (1988) Peripheral chemoreceptors and human adaptation to high altitude. Biomed Biochim Acta 47(1):89–91

    Google Scholar 

  • Monod J, Wyman J, Changeux J (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  Google Scholar 

  • Netzer N, Schuschnik M, Matthys H, Miles L, Steinacker J, Decker MJ, Lehmann M (1997) Sleep and respiration at an altitude of 6400 m (Aconcagua, Argentina). Pneumol 51 (Suppl 3):729–735

    Google Scholar 

  • Jones NC (1980) Blood gases and acid-base physiology, 2. Aufl. Thieme, New York, S 38

    Google Scholar 

  • Pugh LG (1964) Blood volume and hemoglobin concentration at altitudes above 18,000 ft. (5.500 m). J Physiol 170:344–354

    Article  CAS  Google Scholar 

  • Rahn H, Hammond D (1951) Vital capacity at reduced barometric pressure. J Appl Physiol 4(9):715–724

    Article  CAS  Google Scholar 

  • Ramirez G, Bittle PA, Rosen R, Rabb H, Pineda D (1999) High altitude living: genetic and environmental adaptation. Aviat Space Environ Med 70(1):73–81

    Google Scholar 

  • Richalet JP, Gratadour P, Robach P, Pham I, Déchaux M, Joncquiert-Latarjet A (2005) Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med 171(3): 275–281

    Article  Google Scholar 

  • Roeggla G, Roeggla M, Wagner A, Laggner AN (1995) Poor ventilatory response to mild hypoxia may inhibit acclimatization at moderate altitude in elderly patients after carotid surgery. Br J Sport Med 29(2):110–112

    Article  CAS  Google Scholar 

  • Schmidt W (2002) Effects of intermittent exposure to high altitude on blood volume and erythropoetic activity. High Alt Med Biol 3:167–176

    Article  CAS  Google Scholar 

  • Schmidt-Kessen W, Plehn I (1965) Die Erythropoese beim Aufenthalt im Mittelgebirge. Med Welt 34:102–105

    Google Scholar 

  • Schoene RB, Lahiri S, Hackett PH (1984) Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. J Appl Physiol 56(6):1478–1483

    Article  CAS  Google Scholar 

  • Schoene RB (2001) Limits of lung function at high altitude. J Exp Biol 204(Pt18):3124–3127

    Google Scholar 

  • Schwaberger G, Pessenhofer H, Mairbäurl H, Humpeler E (1983) Das Verhalten der die Sauerstoffaffinität des Hämoglobins bestimmenden Parameter bei körperlicher Belastung. In: Heck H, Hollmann W, Liesen H, Rost R (Hrsg) Sport: Leistung und Gesundheit. Dtsch. Ärzte-Verlag, Köln, S 29–33

    Google Scholar 

  • Stea A, Jackson A, Macintyre L, Nurse CA (1995) Long-term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro. J Neurosci 15(3Pt2):2192–2202

    Article  CAS  Google Scholar 

  • Storz JF, Moriyama H (2008) Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt Med Biol 9(2):148–157

    Article  CAS  Google Scholar 

  • Sutton JR, Houston CS, Coates G (1988a) Hypoxia: the tolerable limits. Benekmark press, Indianapolis

    Google Scholar 

  • Sutton JR, Reeves JT, Wagner PD (1988b) Operation Everest II: oxygen transport during excercise at extreme simulated altitude. J Appl Physiol 64(4):1309–1321

    Article  CAS  Google Scholar 

  • Tenney SM, Rahn H, Stroud RC, Mithoefer JC (1953) Adaptation to high altitude: changes in lung volume during the first seven days at Mt. Evans, Colorado. J Appl Physiol 5(10):607–613

    Article  CAS  Google Scholar 

  • Wagner PD (2000) Reduced maximal cardiac output at altitude-mechanisms and significance. Respir Physiol 120(1):1–11

    Article  CAS  Google Scholar 

  • Ward MP, Milledge JS, West JB (1989) High altitude medicine and physiology. Chapman and Hall Ltd, Philadelphia

    Google Scholar 

  • Weber RE (2007) High-altitude adaptations on vertebrate hemoglobine. Respir Physiol Neurobiol 158(2/3):132–142

    Article  CAS  Google Scholar 

  • West JB, Hackett PH, Maret K (1983) Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol 55(3):678–687

    Article  CAS  Google Scholar 

  • West JB, Peters R Jr, Aksnes G, Maret KH, Milledge JS, Schoene RB (1986) Nocturnal periodic breathing at altitudes of 6300 and 8050 m. J Appl Physiol 61(1):280–287

    Article  CAS  Google Scholar 

  • Wilkinson KA, Huey K, Dinger B, He L, Fidone S, Powell FL (2010) Chronic hypoxia increases the gain of the hypoxic ventilatory response by a mechanism in the central nervous system. J Appl Physiol 109(2):424–430

    Article  Google Scholar 

  • Wolf C, Staudenherz A, Roggla G, Waldor T (1997) Potential impact of altitude on lung function. Int Arch Occup Environ Health 69(2):106–108

    Article  Google Scholar 

  • Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt1):143–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Domej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Domej, W., Schwaberger, G. (2019). Physiologie der mittleren, großen und extremen Höhen. In: Berghold, F., et al. Alpin- und Höhenmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56396-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56396-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56395-3

  • Online ISBN: 978-3-662-56396-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics