Skip to main content

Application of DFT Methods to Investigate Activity and Stability of Oxygen Reduction Reaction Electrocatalysts

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

Proton exchange membrane fuel cells (PEMFCs) are considered one of the most promising energy conversion devices due to their high-energy yield and low environmental impact of hydrogen oxidation. The oxygen reduction reaction (ORR) at cathode plays a crucial role during operation of the PEMFCs. However, for various classes of ORR catalysts, the detailed mechanism and the origin of activities require an in-depth understanding. This chapter focuses on the application of density functional theory (DFT) methods in investigating the activity and stability of ORR electrocatalysts to advance the PEMFC performance. The authors systematically reviewed the descriptors to evaluate the catalyst activity, such as adsorption properties of ORR intermediates, potential energy surfaces, reversible potentials, reaction barriers, and catalyst electronic structures. They also discussed various methods implemented to evaluate the ORR stabilities, such as metal dissolution potentials, metal cohesive energies, and binding energies of metal in the active sites.

Author Contributions

X. Chen formulated the idea, Q. Qiao and F. Li helped with the literature survey and X. Chen wrote the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Appleby, Electrocatalysis of aqueous dioxygen reduction. J. Electroanal. Chem. 357(1–2), 117–179 (1993)

    Article  CAS  Google Scholar 

  2. N.M. Markovic, P.N. Ross Jr., Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45(4–6), 117–229 (2002)

    Article  CAS  Google Scholar 

  3. A.C. Luntz, M.D. Williams, D.S. Bethune, The sticking of O2 on a Pt(111) surface. J. Chem. Phys. 89(7), 4381–4395 (1988)

    Article  CAS  Google Scholar 

  4. J. Grimbolt, A.C. Luntz, D.E. Fowler, Low-temperature adsorption of O2 on Pt(111). J. Electron Spectrosc. Relat. Phenom. 52, 161–174 (1990)

    Article  Google Scholar 

  5. B.A. Sexton, Identification of adsorbed species at metal-surfaces by electron-energy loss spectroscopy (EELS). Appl. Phys. A Mater. Sci. Process. 26(1), 1–18 (1981)

    Article  Google Scholar 

  6. E. Jensen, R.A. Bartynski, T. Gustafsson, E.W. Plummer, Angle-resolved photoemission study of the electronic structure of beryllium: bulk band dispersions and many-electron effects. Phys. Rev. B 30(10–15), 5500–5507 (1984)

    Article  CAS  Google Scholar 

  7. X. Chen, D. Xia, Z. Shi, J. Zhang, Theoretical study of oxygen reduction reaction catalysts: from Pt to non-precious metal catalysts, in Electrocatalysis in Fuel Cells, ed. by M. Shao (Ed), (Springer, London, 2013), pp. 339–373

    Google Scholar 

  8. E. Yeager, Electrocatalysts for O2 reduction. Electrochim. Acta 29(11), 1527–1537 (1984)

    Article  CAS  Google Scholar 

  9. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004)

    Article  Google Scholar 

  10. J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen, Universality in heterogeneous catalysis. J. Catal. 209(2), 275–278 (2002)

    Article  Google Scholar 

  11. Y. Xu, A.V. Ruban, M. Mavrikakis, Adsorption and dissociation of O2 on Pt−Co and Pt−Fe alloys. J. Am. Chem. Soc. 126(14), 4717–4725 (2004)

    Article  CAS  Google Scholar 

  12. J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120(21), 10240–10246 (2004)

    Article  CAS  Google Scholar 

  13. U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J. Phys. Chem. B 106(16), 4181–4191 (2002)

    Article  CAS  Google Scholar 

  14. M. Min, J. Cho, K. Cho, H. Kim, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 45(25–26), 4211–4217 (2000)

    Article  CAS  Google Scholar 

  15. M. Neergat, A.K. Shukla, K.S. Gandhi, Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells. J. Appl. Electrochem. 31(4), 373–378 (2001)

    Article  CAS  Google Scholar 

  16. I.E.L. Stephens, A.S. Bondarenko, F.J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T.P. Johansson, A.K. Jepsen, R. Frydendal, B.P. Knudsen, J. Rossmeisl, I. Chorkendorff, Tuning the activity of Pt(111) for oxygen electro-reduction by sub surface alloying. J. Am. Chem. Soc. 133(14), 5485–5491 (2011)

    Article  CAS  Google Scholar 

  17. K.R. Lee, Y. Jung, S.I. Woo, Combinatorial screening of highly active Pd binary catalysts for electrochemical oxygen reduction. ACS Comb. Sci. 14(1), 10–16 (2012)

    Article  CAS  Google Scholar 

  18. R. Chen, H. Li, D. Chu, G. Wang, Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J. Phys. Chem. C 113(48), 20689–20697 (2009)

    Article  CAS  Google Scholar 

  19. X. Chen, The role of chelating ligands and central metals in the oxygen reduction reaction activity: a DFT study. Russ. J. Electrochem. 52(6), 555–559 (2016)

    Article  Google Scholar 

  20. X. Chen, S. Chen, J. Wang, Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory. Appl. Surf. Sci. 379, 291–295 (2016)

    Article  CAS  Google Scholar 

  21. H.A. Hansen, J. Rossmeisl, J.K. Nørskov, Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10(25), 3722–3730 (2008)

    Article  CAS  Google Scholar 

  22. J. Rossmeisl, J. Greeley, G.S. Karlberg, Electrocatalysis and catalyst screening from density functional theory calculations, in Fuel Cell Catalysis, ed. by M. T. M. Koper (Ed), (Wiley, Hoboken, 2009), pp. 57–92

    Google Scholar 

  23. X. Chen, F. Li, X. Wang, S. Sun, D. Xia, Density functional theory study of the oxygen reduction reaction on a cobalt-polypyrrole composite catalyst. J. Phys. Chem. C 116(23), 12553–12558 (2012)

    Article  CAS  Google Scholar 

  24. X. Chen, S. Sun, X. Wang, F. Li, D. Xia, DFT study of polyaniline and metal composites as nonprecious metal catalysts for oxygen reduction in fuel cells. J. Phys. Chem. C 116(43), 22737–22742 (2012)

    Article  CAS  Google Scholar 

  25. S. Kattel, P. Atanassov, B. Kiefer, Density functional theory study of Ni−N x /C electrocatalyst for oxygen reduction in alkaline and acidic media. J. Phys. Chem. C 116(33), 17378–17383 (2012)

    Article  CAS  Google Scholar 

  26. S. Kattel, P. Atanassov, B. Kiefer, Catalytic activity of Co−N x /C electrocatalysts for oxygen reduction reaction: a density functional theory study. Phys. Chem. Chem. Phys. 15(1), 148–153 (2013)

    Article  CAS  Google Scholar 

  27. H.Y. Su, Y. Gorlin, I.C. Man, F. Calle-Vallejo, J.K. Nørskov, T.F. Jaramillo, J. Rossmeisl, Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys. Chem. Chem. Phys. 14(40), 14010–14022 (2012)

    Article  CAS  Google Scholar 

  28. G. Wang, F. Huang, X. Chen, C. Gong, H. Liu, S. Wen, F. Cheng, X. Zheng, G. Zheng, M. Pan, A first-principle study of oxygen reduction reaction on monoclinic zirconia (ī11), (ī01) and (110) surfaces. Catal. Commun. 69, 16–19 (2015)

    Article  CAS  Google Scholar 

  29. J. Roques, A.B. Anderson, Theory for the potential shift for OHads formation on the Pt skin on Pt3Cr(111) in acid. J. Electrochem. Soc. 151(3), E85–E91 (2004)

    Article  CAS  Google Scholar 

  30. A.B. Anderson, R.A. Sidik, Oxygen electroreduction on FeII and FeIII coordinated to N4 chelates. Reversible potentials for the intermediate steps from quantum theory. J. Phys. Chem. B 108(16), 5031–5035 (2004)

    Article  CAS  Google Scholar 

  31. J. Roques, A.B. Anderson, Pt3Cr(111) alloy effect on the reversible potential of OOH(ads) formation from O2(ads) relative to Pt(111). J. Fuel Cell Sci. Technol. 2(2), 86–93 (2005)

    Article  CAS  Google Scholar 

  32. H. Schweiger, E. Vayner, A.B. Anderson, Why is there such a small overpotential for O2 electroreduction by copper laccase? Electrochem. Solid-State Lett. 8(11), A585–A587 (2005)

    Article  CAS  Google Scholar 

  33. R.A. Sidik, A.B. Anderson, Co9S8 as a catalyst for electroreduction of O2: quantum chemistry predictions. J. Phys. Chem. B 110(2), 936–941 (2006)

    Article  CAS  Google Scholar 

  34. R.A. Sidik, A.B. Anderson, O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. J. Phys. Chem. B 110(4), 1787–1793 (2006)

    Article  CAS  Google Scholar 

  35. E. Vayner, H. Schweiger, A.B. Anderson, Four-electron reduction of O2 over multiple CuI centers: quantum theory. J. Electroanal. Chem. 607(1–2), 90–100 (2007)

    Article  CAS  Google Scholar 

  36. E. Vayner, A.B. Anderson, Theoretical predictions concerning oxygen reduction on nitrided graphite edges and a cobalt center bonded to them. J. Phys. Chem. C 111(26), 9330–9336 (2007)

    Article  CAS  Google Scholar 

  37. E. Vayner, R.A. Sidik, A.B. Anderson, Experimental and theoretical study of cobalt selenide as a catalyst for O2 electroreduction. J. Phys. Chem. C 111(28), 10508–10513 (2007)

    Article  CAS  Google Scholar 

  38. K.A. Kurak, A.B. Anderson, Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J. Phys. Chem. C 113(16), 6730–6734 (2009)

    Article  CAS  Google Scholar 

  39. K.A. Kurak, A.B. Anderson, Selenium: a nonprecious metal cathode catalyst for oxygen reduction. J. Electrochem. Soc. 157(1), B173–B179 (2010)

    Article  CAS  Google Scholar 

  40. X. Chen, Q. Qiao, L. An, D. Xia, Why do boron and nitrogen doped α- and γ-Graphyne exhibit different oxygen reduction mechanism? A first-principles study. J. Phys. Chem. C 119(21), 11493–11498 (2015)

    Article  CAS  Google Scholar 

  41. A.B. Anderson, T.V. Albu, Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J. Am. Chem. Soc. 121(50), 11855–11863 (1999)

    Article  CAS  Google Scholar 

  42. J. Zhang, Z. Wang, Z. Zhu, The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: a density functional theory study. J. Power Sources 255, 65–69 (2014)

    Article  CAS  Google Scholar 

  43. X. Zhang, Z. Lu, Z. Fu, Y. Tang, D. Ma, Z. Yang, The mechanisms of oxygen reduction reaction on phosphorus doped graphene: a first-principles study. J. Power Sources 276, 222–229 (2015)

    Article  CAS  Google Scholar 

  44. Z. Duan, G. Wang, A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Phys. Chem. Chem. Phys. 13(45), 20178–20187 (2011)

    Article  CAS  Google Scholar 

  45. Z. Duan, G. Wang, Comparison of reaction energetics for oxygen reduction reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) surfaces: a first-principles study. J. Phys. Chem. C 117(12), 6284–6292 (2013)

    Article  CAS  Google Scholar 

  46. S. Kattel, G. Wang, Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 5(3), 452–456 (2014)

    Article  CAS  Google Scholar 

  47. B. Hammer, J.K. Nørskov, Why gold is the noblest of all the metals. Nature 376(6537), 238–240 (1995)

    Article  CAS  Google Scholar 

  48. B. Hammer, Y. Morikawa, J.K. Nørskov, CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76(12), 2141–2144 (1996)

    Article  CAS  Google Scholar 

  49. L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb, Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44(14), 2080–2084 (2005)

    Article  CAS  Google Scholar 

  50. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)

    Article  CAS  Google Scholar 

  51. V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45(18), 2897–2901 (2006)

    Article  CAS  Google Scholar 

  52. J. Aihara, Reduced homo-lumo gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103(37), 7487–7495 (1999)

    Article  CAS  Google Scholar 

  53. X. Chen, F. Li, N. Zhang, L. An, D. Xia, Mechanism of oxygen reduction reaction catalyzed by Fe(Co)−N x /C. Phys. Chem. Chem. Phys. 15(44), 19330–19336 (2013)

    Article  CAS  Google Scholar 

  54. X. Chen, Oxygen reduction reaction on cobalt−(n)pyrrole clusters from DFT studies. RSC Adv. 6(7), 5535–5540 (2016)

    Article  CAS  Google Scholar 

  55. X. Chen, Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms. Phys. Chem. Chem. Phys. 17(43), 29340–29343 (2015)

    Article  CAS  Google Scholar 

  56. L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011)

    Article  CAS  Google Scholar 

  57. M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11(9), 3714–3719 (2011)

    Article  CAS  Google Scholar 

  58. K. Sasaki, H. Naohara, Y. Cai, Y.M. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, R.R. Adzic, Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. 49(46), 8602–8607 (2010)

    Article  CAS  Google Scholar 

  59. J.K. Seo, A. Khetan, M.H. Seo, H. Kim, B. Han, First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. J. Power Sources 238, 137–143 (2013)

    Article  CAS  Google Scholar 

  60. S.H. Noh, M.H. Seo, J.K. Seo, P. Fischer, B. Han, First principles computational study on the electrochemical stability of Pt−Co nanocatalysts. Nanoscale 5(18), 8625–8633 (2013)

    Article  CAS  Google Scholar 

  61. S.H. Noh, B. Han, T. Ohsaka, First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Res. 8(10), 3394–3403 (2015)

    Article  CAS  Google Scholar 

  62. C.D. Taylor, M. Neurock, J.R. Scully, First-principles investigation of the fundamental corrosion properties of a model Cu38 nanoparticle and the (111), (113) surfaces. J. Electrochem. Soc. 155(8), C407–C414 (2008)

    Article  CAS  Google Scholar 

  63. I. Matanović, F.H. Garzon, N.J. Henson, Theoretical study of electrochemical processes on Pt−Ni alloys. J. Phys. Chem. C 115(21), 10640–10650 (2011)

    Article  Google Scholar 

  64. I. Matanović, P.R.C. Kent, F.H. Garzon, N.J. Henson, Density functional theory study of oxygen reduction activity on ultrathin platinum nanotubes. J. Phys. Chem. C 116(31), 16499–16510 (2012)

    Article  Google Scholar 

  65. I. Matanović, P.R.C. Kent, F.H. Garzon, N.J. Henson, Density functional study of the structure, stability and oxygen reduction activity of ultrathin platinum nanowires. J. Electrochem. Soc. 160(6), F548–F553 (2013)

    Article  Google Scholar 

  66. Y. Okamoto, Comparison of hydrogen atom adsorption on Pt clusters with that on Pt surfaces: a study from density-functional calculations. Chem. Phys. Lett. 429(1), 209–213 (2006)

    Article  CAS  Google Scholar 

  67. J.M. Seminario, L.A. Agapito, L. Yan, P.B. Balbuena, Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with Cr, Co, and Ni. Chem. Phys. Lett. 410(4–6), 275–281 (2005)

    Article  CAS  Google Scholar 

  68. G. Zanti, D. Peeters, DFT study of small palladium clusters Pd n and their interaction with a CO ligand (n = 1–9). Eur. J. Inorg. Chem. 2009(26), 3904–3911 (2009)

    Article  Google Scholar 

  69. Z. Lu, G. Xu, C. He, T. Wang, L. Yang, Z. Yang, D. Ma, Novel catalytic activity for oxygen reduction reaction on MnN4 embedded graphene: a dispersion-corrected density functional theory study. Carbon 84, 500–508 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Agreement code No. 51602270). Two publications Lecture Notes in Energy, Volume 9 (2013), Electrocatalysis in Fuel Cells: A Non- and Low-Platinum Approach, and Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory, Applied Surface Science Volume 379, 30 August 2016, pages 291–295, have been cited and are duly acknowledged. The authors appreciated the scientists who described useful views that were cited in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X., Qiao, Q., Li, F. (2018). Application of DFT Methods to Investigate Activity and Stability of Oxygen Reduction Reaction Electrocatalysts. In: Li, F., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56364-9_11

Download citation

Publish with us

Policies and ethics