Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter deals with vibration and wave propagation under the general assumption that amplitudes are sufficiently small in order to neglect nonlinear effects when vibrations or waves are superimposed. It will be shown how wave equations can be derived for strings, bars and air columns and how analytic results can be obtained for some boundary conditions. This chapter will also review techniques for the calculation of resonance frequencies. Finally an introduction into the analysis of real musical instruments in the frequency domain will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

1-D:

one-dimensional

2-D:

two-dimensional

3-D:

three-dimensional

RMS:

root mean square

References

  1. L. Euler: Introductio in Analysin Infinitorum (M.M.Bousquet, Lausannae 1748)

    Google Scholar 

  2. C.F. Gauss: Theoria residuorum biquadraticorum, commentatio secunda, Göttingische gelehrte Anzeigen 1, 169–178 (1831)

    Google Scholar 

  3. A. Hirschberg, J. Gilbert, R. Msallam, A.P.J. Wijnands: Shock waves in trombones, J. Acoust. Soc. Am. (JASA) 99(3), 1754–1758 (1996)

    Article  Google Scholar 

  4. C. Huygens: Traité de la lumiere (Pieter van der Aa, Leiden 1690)

    Google Scholar 

  5. D.G. Crighton: Propagation of finite amplitude waves in fluids. In: Handbook of Acoustics, ed. by M.J. Crocker (Wiley, New York 1998) pp. 187–202

    Google Scholar 

  6. H.A. Conklin Jr.: Generation of partials due to nonlinear mixing in a stringed instrument, J. Acoust. Soc. Am. (JASA) 105(1), 536–545 (1999)

    Article  Google Scholar 

  7. B. Bank, L. Sujbert: Generation of longitudinal vibrations in piano strings: From physics to sound synthesis, J. Acoust. Soc. Am. (JASA) 117(4), 2268–2278 (2005)

    Article  Google Scholar 

  8. E. Bavu, J. Smith, J. Wolfe: Torsional waves in a bowed string, Acta Acustica united with Acustica 91(2), 241–246 (2005)

    Google Scholar 

  9. F. Pinard, B. Laine, H. Vach: Musical quality assessment of clarinet reeds using optical holography, J. Acoust. Soc. Am. (JASA) 113(3), 1736–1742 (2003)

    Article  Google Scholar 

  10. N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments, 2nd edn. (Springer, New York 1990)

    MATH  Google Scholar 

  11. W. Kausel: Bore reconstruction of tubular ducts from acoustic input impedance curve, IEEE Trans. Instrum. Meas. 53(4), 1097–1105 (2004)

    Article  Google Scholar 

  12. J.W.S. Rayleigh: The Theory of Sound, Vol. 2, 2nd edn. (Repr. Dover, New York 1894)

    MATH  Google Scholar 

  13. H. Levine, J. Schwinger: On the radiation of sound from an unflanged circular pipe, Phys. Rev. 73, 383–406 (1948)

    Article  MathSciNet  Google Scholar 

  14. R. Caussé, J. Kergomard, X. Lurton: Input impedance of brass musical instruments – Comparison between experiment and numerical models, J. Acoust. Soc. Am. (JASA) 75, 241–254 (1984)

    Article  Google Scholar 

  15. T. Hélie, X. Rodet: Radiation of a pulsating portion of a sphere: Application to horn radiation, Acustica 89(4), 565–577 (2003)

    Google Scholar 

  16. D. Mapes-Riordan: Horn modeling with conical and cylindrical transmission-line elements, J. Audio Eng. Soc. 41(6), 471–483 (1993)

    Google Scholar 

  17. D.H. Keefe: Woodwind Tone Hole Acoustics and the Spectrum Transformation Function, Ph.D. Thesis (Physics Dept., Case Western Reserve University, Cleveland 1981)

    Google Scholar 

  18. D.H. Keefe: Woodwind air column models, J. Acoust. Soc. Am. (JASA) 88(1), 35–51 (1990)

    Article  Google Scholar 

  19. D.H. Keefe: Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions, J. Acoust. Soc. Am. (JASA) 75(1), 58–62 (1984)

    Article  Google Scholar 

  20. A.H. Benade: Equivalent circuits for conical waveguides, J. Acoust. Soc. Am. (JASA) 83, 1764–1769 (1988)

    Article  Google Scholar 

  21. P.M. Morse, U. Ingard: Theoretical Acoustics (Princeton Univ. Press, Princeton 1987) pp. 1–927

    Google Scholar 

  22. C. Valette: The mechanics of vibrating strings. In: Mechanics of Musical Instruments, Courses and Lectures/International Centre for Mechanical Sciences, Vol. 355, ed. by A. Hirschberg, J. Kergomard, G. Weinreich (Springer, Wien 1995) pp. 115–184

    Google Scholar 

  23. I. Testa, G. Evangelista, S. Cavaliere: Physically inspired models for the synthesis of stiff strings with dispersive waveguides, EURASIP J. Adv. Signal Process. 7, 964–977 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kausel, W. (2018). Vibrations and Waves. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics