Skip to main content

Musical Instruments as Synchronized Systems

  • Chapter
Springer Handbook of Systematic Musicology

Part of the book series: Springer Handbooks ((SHB))

  • 5359 Accesses

Abstract

Most musical instrument families have nearly perfect harmonic overtone series, for example plucked, bowed, or wind instruments. However, when considering the complex geometry and nonlinear driving mechanisms many of these instruments have we would expect them to have very inharmonic overtone series. So to make musical instruments play notes that we accept as harmonic sounds, synchronization needs to occur to arrive at the perfect harmonic overtone series the instruments actually produce. The reasons for this synchronization are different in the singing voice, organs, saxophones or clarinets, violin bowing or in plucked stringed instruments. However, when examining the mechanisms of synchronization further, we find general rules and suitable algorithms to understand the basic behavior of these instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FDTD:

finite-difference time domain

FEM:

finite element method

IPF:

impulse pattern formulation

References

  1. H. Haken: Synergetics (Springer, Berlin, Heidelberg 1990)

    MATH  Google Scholar 

  2. J. Argyris, G. Faust, M. Haase, R. Friedrich: An Exploration of Dynamical Systems and Chaos (Springer, Berlin, Heidelberg 2015)

    Book  Google Scholar 

  3. V. Aschoff: Experimentelle Untersuchungen an einer Klarinette. [Experimental investigations of a clarinet], Akust. Z. 1, 77–93 (1936)

    Google Scholar 

  4. J. Sundberg: The Science of the Singing Voice (Nothern Illinois University Press, DeKalb 1988)

    Google Scholar 

  5. I.R. Titze: The physics of small-amplitude oscillation of the vocal folds, J. Acoust. Soc. Am. 83, 1536–1552 (1988)

    Article  Google Scholar 

  6. T. Fitch, J. Neubauer, H. Herzel: Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production, Animal Behav. 63(3), 407–418 (2002)

    Article  Google Scholar 

  7. P. Mergell, H. Herzel, T. Wittenberg, M. Tigges, U. Eysholdt: Phonation onset: Vocal fold modeling and high-speed glottography, J. Acoust. Soc. Am. 104(1), 464–470 (1998)

    Article  Google Scholar 

  8. P. Mergell, H. Herzel, I.R. Tietze: Irregular vocal-fold vibration – High-speed observation and modeling, J. Acoust. Soc. Am. 108(6), 2996–2300 (2000)

    Article  Google Scholar 

  9. A. Behrmann, R.J. Baken: Correlation dimension of electroglottographic data from healthy and pathologic subjects, J. Acoust. Soc. Am. 102(4), 2371–2379 (1997)

    Article  Google Scholar 

  10. J. Neubauer, M. Edgerton, H. Herzel: Nonlinear phenomena in contemporary vocal music, J. Voice 18(1), 1–12 (2004)

    Article  Google Scholar 

  11. K. Ishizaka: Equivalent lumped-mass models of vocal fold vibration. In: Vocal Fold Physiology (1981) pp. 231–244

    Google Scholar 

  12. I.R. Titze, Sh S. Schmidt, M.R. Titze: Phonation threshold pressure in a physical model of the vocal fold mucosa, J. Acoust. Soc. Am. 97(5), 3080–3084 (1995)

    Article  Google Scholar 

  13. J.J. Jiang, Y. Zhang: Modeling of chaotic vibrations in symmetric vocal folds, J. Acoust. Soc. Am. 110(4), 2120–2128 (2001)

    Article  Google Scholar 

  14. J.J. Jiang, Y. Zhang: Chaotic vibration induced by turbulent noise in a two-mass model of vocal folds, J. Acoust. Soc. Am. 112(5), 2127–2133 (2002)

    Article  Google Scholar 

  15. J.G. Švec, H.K. Schutte, D.G. Miller: On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges, J. Acoust. Soc. Am. 106(3), 1523–1531 (1999)

    Article  Google Scholar 

  16. I.T. Tokuda, M. Zemke, M. Kob, H. Herzel: Biomechanical modeling of register transition and the role of vocal tract resonators, J. Acoust. Soc. Am. 127(3), 1528–1536 (2010)

    Article  Google Scholar 

  17. J.C. Lucero: Dynamics of the two-mass model of the vocal folds: Equilibria, bifurcations, and oscillation region, J. Acoust. Soc. Am. 94(6), 3104–3111 (1993)

    Article  Google Scholar 

  18. J.C. Lucero: A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset, J. Acoust. Soc. Am. 105(1), 423–431 (1999)

    Article  Google Scholar 

  19. J.C. Lucero, L.L. Koenig, K.G. Lourenço, N. Ruty, X. Pelorson: A lumped mucosal wave model of the vocal folds revisited: Recent extensions and oscillation hysteresis, J. Acoust. Soc. Am. 129(3), 1568–1579 (2011)

    Article  Google Scholar 

  20. P.Å. Lindestad, M. Södersten, B. Merker, S. Granqvist: Voice source characteristics in Mongolian ‘throat singing’ studied with high-speed imaging technique, acoustic spectra, and inverse filtering, J. Voice 15(1), 78–85 (2001)

    Article  Google Scholar 

  21. I. Steinecke, H. Herzel: Birfurcations in an asymmetric vocal fold model, J. Acoust. Soc. Am. 97, 1874–1884 (1995)

    Article  Google Scholar 

  22. M.-H. Lee, J.N. Lee, K.-S. Soh: Chaos in segments from Korean traditional singing and Western singing, J. Acoust. Soc. Am. 103(2), 1175–1182 (1998)

    Article  Google Scholar 

  23. D.A. Berry, H. Herzel, I.R. Titze, K. Krischer: Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions, J. Acoust. Soc. Am. 95(6), 3595–3604 (1994)

    Article  Google Scholar 

  24. Q. Xue, R. Mittal, X. Zhang: A computational study of the effect of vocal-fold asymmetry on phonation, J. Acoust. Soc. Am. 128(2), 181–187 (2010)

    Article  Google Scholar 

  25. F.A. Berry, H. Herzel, I.R. Tieze, B.H. Story: Bifurcations in excised larynx experiments, J. Voice 10, 129–138 (1996)

    Article  Google Scholar 

  26. T. Lerch: Vergleichende Untersuchung von Bohrungsprofilen historischer Blockflöten des Barock (Comparative investigation of bore profiles of historical Barock recorder flutes) (Staatliches Institut für Musikforschung. Preussischer Kulturbesitz Musikinstrumentenmuseum, Berlin 1996)

    Google Scholar 

  27. C.J. Nederveen: Acoustical Aspects of Musical Instruments (Northern Illinois University Press, DeKalb 1998)

    Google Scholar 

  28. A.H. Benade: Fundamentals of Musical Acoustics (Oxford Univ. Press, New York 1976)

    Google Scholar 

  29. G. Krassnitzer: Multiphonics für Klarinette mit deutschem System und andere zeitgenössische Spielarten. (Multiphonics for clarinet with german system and other contemporary styles) (edition ebenos, Aachen 2002)

    Google Scholar 

  30. P.A. Durbin, R. Pettersson: Statistical Theory and Modeling for Turbulent Flows (Wiley, Chichester 2001)

    MATH  Google Scholar 

  31. B. Fabre, A. Hirschberg, A.P.J. Wijnands: Vortex shedding in steady oscillation of a flue organ pipe, Acta Acust. United Acust. 82, 863–877 (1996)

    Google Scholar 

  32. J.-P. Dalmont, J. Gilbert, J. Kergomard, S. Ollivier: An analytical prediction of the oscillation and extinction thresholds of a clarinet, J. Acoust. Soc. Am. 118(5), 3294–3305 (2005)

    Article  Google Scholar 

  33. R. Kaykayoglu, D. Rockwell: Unstable jet-edge interaction. Part 1. Instantaneous pressure fields at a single frequency, J. Fluid Mech. 169, 125–149 (1986)

    Article  Google Scholar 

  34. R. Kaykayoglu, D. Rockwell: Unstable jet-edge interaction. Part 2: Multiple frequency pressure fields, J. Fluid Mech. 169, 151–172 (1986)

    Article  Google Scholar 

  35. A. Richter, R. Grundmann: Numerical investigations of the bassoons aeroacoustic, J. Acoust. Soc. Am. 123, 3448 (2008)

    Article  Google Scholar 

  36. R. Bader: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology, Springer Series Current Research in Systematic Musicology, Vol. 2 (Springer, Heidelberg 2013)

    Book  Google Scholar 

  37. J.W. Coltman: Sounding mechanism of the flute and organ pipe, J. Acoust. Soc. Am. 44(4), 983–992 (1968)

    Article  Google Scholar 

  38. M. Abel, S. Bergweiler, R. Gerhard-Multhaupt: Synchronization of organ pipes: Experimental observations and modeling, J. Acoust. Soc. Am. 119, 2467 (2006)

    Article  Google Scholar 

  39. W. Lottermoser: Orgeln, Kirchen und Akustik (Organs, Churches, and Acoustics) (Erwin Bochinsky, Frankfurt a.M. 1983)

    Google Scholar 

  40. C. Koehn: A bowed bamboo tube zither from Southeast Asia. In: ISMA, Le Mans 2014 (2014) pp. 499–502

    Google Scholar 

  41. G. Müller, W. Lauterborn: The bowed string as a nonlinear dynamical system, Acustica 82, 657–664 (1996)

    Google Scholar 

  42. C.V. Raman: On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results, Bull. Indian Assoc. Cultivat. Sci. 15, 1–158 (1918)

    Google Scholar 

  43. L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1985)

    Google Scholar 

  44. A. Askenfeld: Measurements of bow motion and bow force in violin playing, J. Acoust. Soc. Am. 80, 1007–1015 (1986)

    Article  Google Scholar 

  45. P. Duffour, J. Woodhouse: Instability of systems with a frictional point contact: Part 1, Basic modelling, J. Sound Vib. 271, 365–390 (2004)

    Article  Google Scholar 

  46. P. Duffour, J. Woodhouse: Instability of systems with a frictional point contact: Part 2, Model extensions, J. Sound Vib. 271, 391–410 (2004)

    Article  Google Scholar 

  47. W. Güth: A comparison of the Raman and the oscillator models of string excitation by bowing, Acustica 82, 169–174 (1996)

    MATH  Google Scholar 

  48. M.E. McIntyre, J. Woodhouse: Fundamentals of bowed-string dynamics, Acustica 43, 93–108 (1979)

    MATH  Google Scholar 

  49. M.E. McIntyre, J. Woodhouse: On the oscillations of musical instruments, J. Acoust. Soc. Am. 74(5), 1325–1345 (1983)

    Article  Google Scholar 

  50. R. Bader: Whole geometry finite-difference modeling of the violin. In: Proc. Forum Acusticum 2005 (2005) pp. 629–634

    Google Scholar 

  51. R.J. Hanson, A.J. Schneider, F.W. Halgedahl: Anomalous low-pitched tones from a bowed violin string, J. Catgut Acoust. Soc. 2, 1–7 (1994)

    Google Scholar 

  52. M. Kimura: How to produce subharmonics on the violin, New Music Res. 28, 178–184 (1999)

    Article  Google Scholar 

  53. J. Angster, J. Angster, A. Miklós: Coupling between simultaneously sounded organ pipes, AES E-Library 94, 1–8 (1993)

    Google Scholar 

  54. D.H. Keefe, B. Laden: Correlation dimension of woodwind multiphonic tones, J. Acoust. Soc. Am. 90(4), 1754–1765 (1991)

    Article  Google Scholar 

  55. D. Borgo: Sync or Swarm. Improvising Music in a Complex Age (Bloomsbury Academic, New York, London 2005)

    Google Scholar 

  56. V. Gibiat: Phase space representations of acoustical musical signals, J. Sound Vib. 123(3), 529–536 (1988)

    Article  MathSciNet  Google Scholar 

  57. R.V. Velazques: Ancient aerophones with mirliton. In: Proceedings ISGMA (2004) pp. 363–373

    Google Scholar 

  58. N.H. Fletcher: Mode locking in nonlinearly excited inharmonic musical oscillators, J. Acoust. Soc. Am. 64, 1566–1569 (1978)

    Article  Google Scholar 

  59. S. Dubnov, X. Rodet: Investigation of phase coupling phenomena in sustained portion of musical instruments sound, J. Acoust. Soc. Am. 113, 348–359 (2003)

    Article  Google Scholar 

  60. K.A. Legge, N.H. Fletcher: Nonlinear generation of missing modes on a vibrating string, J. Acoust. Soc. Am. 76(1), 5–12 (1984)

    Article  Google Scholar 

  61. R. Bader: Theoretical framework for initial transient and steady-state frequency amplitudes of musical instruments as coupled subsystems. In: Proc. 20th Int. Symp. Music Acoust. (ISMA) (2010) pp. 1–8

    Google Scholar 

  62. P. Cariani: Temporal codes, timing nets, and music perception, J. New Music Res. 30(2), 107135 (2001)

    Google Scholar 

  63. F. Messner: Friction blocks of New Ireland. In: Australia and the Pacific Islands, Garland Encyclopedia of World Music, Vol. 9, ed. by A.L. Kaeppler, J.W. Love (Routledge, London 1998) pp. 380–382

    Google Scholar 

  64. N.J. Conrad, M. Malina, S.C. Münzel: New flutes document the earliest musical tradition in southwestern Germany, Nature 460, 737–740 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bader, R. (2018). Musical Instruments as Synchronized Systems. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics