Skip to main content

Management von Komplikationen: Sepsis, Multiorganversagen, ARDS

  • Chapter
Management des Schwerverletzten
  • 4639 Accesses

Zusammenfassung

Sepsis, akutes Lungenversagen (Acute Respiratory Distress Syndrome, ARDS) und Multiorganversagen stellen lebensbedrohliche Komplikation nach Polytrauma dar. Eine umgehende, entschlossene und zielgerichtete Therapie dieser Komplikationen ist für den klinischen Verlauf des Patienten von herausragender Bedeutung. So entscheidet die Therapie einer Sepsis anhand vorher festgelegter Protokolle und Zielparameter besonders in den ersten 6 h nach Diagnosestellung über die Letalität des Patienten. Die Therapie des ARDS inkludiert eine lungenprotektive Beatmung, die Rekrutierung geschädigter Lungenareale durch ein adäquates PEEP-Niveau und ein subtiles Flüssigkeitsmanagement zur Vermeidung der Entstehung oder Progredienz eines Lungenödems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, et al. (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23): 2526–2533

    Google Scholar 

  • Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2: 319

    Google Scholar 

  • Bein T, Weber-Carstens S, Goldmann A, et al. (2013) Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 39: 847–856

    Google Scholar 

  • Bernard GR, Artigas A, Brigham KL, et al. (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824

    Google Scholar 

  • Bloos F, Thomas-Rüddel D, Rüddel H, et al., for the MEDUSA Study Group (2014) Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study. Crit Care 18(2): R42–2

    Google Scholar 

  • Briel M, Meade M, Mercat A, et al. (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303(9): 865–873

    Google Scholar 

  • Brower RG, Lanken PN, MacIntyre N, et al.; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher vs lower end-expiratory pressure in patients with the ARDS. N Engl J Med 351(4): 327–336

    Google Scholar 

  • Caironi P, Tognoni G, Masson S, et al.; ALBIOS Study Investigators (2014) Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370(15): 1412–1421

    Google Scholar 

  • Cohen J (2002) The immunopathogenesis of sepsis. Nature 420(6917): 885–891

    Google Scholar 

  • Dantzker DR, Brook CJ, Dehart P et al. (1979) Ventilation−perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 120(5): 1039–1052

    Google Scholar 

  • Davies A, Jones D, Bailey M, et al. (2009) Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome. JAMA 302: 1888–1895

    Google Scholar 

  • Dellinger RP, Levy MM, Rhodes A et al.; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Intensive Care Medicine 34(1): 17–60

    Google Scholar 

  • Dreyfuss D, Saumon G (1998) Ventilator-Induced Lung Injury: lessons from experimental studies. Am J Respir Crit Care Med 157(1): 294–323

    Google Scholar 

  • Engel C, Brunkhorst FM, Bone H-G, et al. (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Medicine 33(4): 606–618

    Google Scholar 

  • Ferguson ND, Fan E, Camporota L, et al. (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38(10): 1573–1582

    Google Scholar 

  • Ferrer R, Martin-Loeches I, Phillips G, et al. (2014) Empiric Antibiotic Treatment Reduces Mortality in Severe Sepsis and Septic Shock From the First Hour. Crit Care Med 42(8): 1749–1755

    Google Scholar 

  • Gama de Abreu M, Güldner A, Pelosi P (2012) Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome. Intensive Care Med (2012) 38:1573–1582; Curr Opin Anaesthesiol 25(2): 148–155

    Google Scholar 

  • Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164(9): 1701–1711

    Google Scholar 

  • Gebhard F, Huber-Lang M (2008) Polytrauma-pathophysiology and management principles. Langenbeck’s archives of surgery 393(6): 825–831

    Google Scholar 

  • Gerlach H, Keh D, Semmerow A, et al. (2003) Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med 167(7): 1008–1015

    Google Scholar 

  • Gordo VF, Delgado AC, Calvo HE (2007) Mechanical ventilation induced lung injury. Med Intensiva 31(1): 18–26

    Google Scholar 

  • Grasso S, Stripoli T, Sacchi M, et al. (2009) Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med 180(5): 415–423

    Google Scholar 

  • Guerin C (2011) The preventive role of higher PEEP in treating severly hypoxemic ARDS. Minerva Anestesiol 77(8): 835–845

    Google Scholar 

  • Guérin C, Reignier J, Richard JC, et al.; PROSEVA Study Group (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368(23): 2159–2168

    Google Scholar 

  • Halbertsma FJ, Vaneker M, Scheffer GJ, van der Hoeven JG (2005) Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature. Neth J Med 63(10): 382–392

    Google Scholar 

  • Hraiech S, Forel JM, Papazian L (2012) The role of neuromuscular blockers in ARDS: benefits and risks. Curr Opin Crit Care 18(5): 495–502

    Google Scholar 

  • Huh JW, Koh Y (2013) Ventilation parameters used to guide cardiopulmonary function during mechanical ventilation. Curr Opin Crit Care 19: 215–220

    Google Scholar 

  • Jaber S, Jung B, Matecki S, Petrof BJ (2011) Clinical review: ventilator-induced diaphragmatic dysfunction-human studies confirm animal model findings! Crit Care 15: 206

    Google Scholar 

  • Kumar A, Roberts D, Wood KE, et al. (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34(6): 1589–1596

    Google Scholar 

  • Lee SJ, Ramar K, Park JG, et al. (2014) Increased Fluid Administration in the First Three Hours of Sepsis Resuscitation Is Associated With Reduced Mortality. Crit Care Med 146(4): 908

    Google Scholar 

  • Levine S, Nguyen T, Taylor N,et al. 2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358: 1327–1335

    Google Scholar 

  • Levy MM, Rhodes A, Phillips GS, et al. (2015) Surviving Sepsis Campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med 43(1): 3–12

    Google Scholar 

  • Luce JM, Montgomery AB, Marks JD, et al. (1998) Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis 138: 62–68

    Google Scholar 

  • Lundin S, Mang H, Smithies M, et al. (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 25(9): 911–919

    Google Scholar 

  • Marx G, Schindler AW, Mosch C, et al. (2016) Intravascular volume therapy in adults. Eur J Anaesthesiol 33(7): 488–521

    Google Scholar 

  • Mayor S (2013) EMA confirms that hydroxyethyl starch solutions should not be used in critically ill, sepsis, or burns patients. BMJ 347: f6197

    Google Scholar 

  • McAuley DF, Laffey JG, O’Kane CM, et al.; HARP-2 Investigators; Irish Critical Care Trials Group (2014) Simvastatin in the acute respiratory distress syndrome. N Engl J Med 371(18): 1695–1703

    Google Scholar 

  • Meade MO, Cook DJ, Griffith LE, et al. (2008) A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir Care 53(11): 1441–1449

    Google Scholar 

  • Meduri GU, Golden E, Freire AX, et al. (2007) Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 131: 954–963

    Google Scholar 

  • Mercat A, Richard JC, Vielle B, et al. ; Expiratory Pressure (Express) Study Group (2008) Positive End-Expiratory pressure Setting in Adults with acute lung injury and acute respiratory distress syndrome. JAMA 299(6): 646–655

    Google Scholar 

  • Mouncey PR, Osborn TM, Power GS, et al. (2015) Trial of Early, Goal-Directed Resuscitation for Septic Shock. N Engl J Med 372(14): 1301–1311

    Google Scholar 

  • Myburgh JA, Finfer S, Bellomo R, et al. (2012) Hydroxyethyl Starch or Saline for Fluid Resuscitation in Intensive Care. N Engl J Med 367(20): 1901–1911

    Google Scholar 

  • National Heart, Lung, and Blood Institute ARDS Clinical Trials Network, Truwit JD, Bernard GR, Steingrub J, et al. (2014) Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 370(23): 2191–200

    Google Scholar 

  • Oeckler RA, Hubmayr RD (2008) Cell wounding and repair in ventilator injured lungs. Respir Physiol Neurobiol 163(1–3): 44–53

    Google Scholar 

  • Papazian L, Forel JM, Gacouin A et al. (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363: 1107–1116

    Google Scholar 

  • Pelosi P, Rocco PR, de Abreu MG (2011) Use of computed tomography scanning to guide lung recruitment and adjust positive-end expiratory pressure. Curr Opin Crit Care 17(3): 268–274

    Google Scholar 

  • Perner A, Haase N, Guttormsen AB (20112) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367(2): 124–134

    Google Scholar 

  • Phua J, Badia JR, Adhikari NKJ, et al. (2009) Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review. Am J Respir Crit Care Med 179: 220–227

    Google Scholar 

  • Plötz FB, Slutsky AS, van Vught AJ, Heijnen CJ (2004) Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med 30(10): 1865–1872

    Google Scholar 

  • Rivers E, Nguyen B, Havstad S, et al. (2001) Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. NEJM 345(19): 1368–1377

    Google Scholar 

  • Rhodes A, Cecconi M, Hamilton M, et al. (2010) Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Int Care Med 36(8): 1327–1332

    Google Scholar 

  • Rocco PR, Pelosi P, de Abreu MG (2010) Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome. Expert Rev Respir Med 4(4): 479–489

    Google Scholar 

  • Rossaint R, Falke KJ, Lopez F, et al. (1993) Inhaled nitric oxid for the adult respiratory distress syndrome. N Engl J Med 328: 399–405

    Google Scholar 

  • Schürholz T (2015) Sepsis und Multiorganversagen – Therapeutische Möglichkeiten. Anästhesiologie Intensivmedizin Notfallmedizin Schmerztherapie 50(02): 132–140

    Google Scholar 

  • SepNet Critical Care Trials Group (2016) Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study. Intensive Care Med 42(12): 1980–1989

    Google Scholar 

  • Seymour CW, Liu VX, Iwashyna TJ, et al. (2016) Assessment of Clinical Criteria for Sepsis. JAMA 315(8): 762–713

    Google Scholar 

  • Simon TP, Thiele C, Schuerholz T, Fries M (2015) Molecular weight and molar substitution are more important in HES-induced renal impairment than concentration after hemorrhagic and septic shock. Minerva Anestesiol 81(6): 608–618

    Google Scholar 

  • Singer M, Deutschman CS, Seymour CW, et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8): 801–802

    Google Scholar 

  • Steinberg KP, Hudson LD, Goodman RB, et al.; National Heart Lung and Blood Institute Acute Respiratory Distress Syndrome ARDS Clinical Trials Network (2006) Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 354: 1671–1684

    Google Scholar 

  • Stensballe J, Christiansen M, Tønnesen E, et al. (2009) The Early Il-6 and IL-10 response in trauma is correlated with injury severity and mortality. Acta Anaesthesiol Scand 53(4): 515–521

    Google Scholar 

  • Sud S, Friedrich JO, Taccone P, et al. (2010) Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 36: 585–599

    Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6): 805–820

    Google Scholar 

  • Talmor D, Sarge T, Malhotra A, et al. (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20): 2095–2104

    Google Scholar 

  • The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Google Scholar 

  • The ARISE Investigators and the ANZICS Clinical Trials Group (2014) Goal-Directed Resuscitation for Patients with Early Septic Shock. N Engl J Med 371(16): 1496–1506

    Google Scholar 

  • Terragni PP, Rosboch G, Tealdi A,et al. (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175: 160–166

    Google Scholar 

  • Vincent JL, Moreno R, Takala J, et al. (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medi 22(7): 707–710

    Google Scholar 

  • Walport MJ (2001) Complement. First of two parts. NEJM 344(14): 1058–1066

    Google Scholar 

  • Ware LB, Matthay MA (2000) The acute respirato-ry distress syndrome. N Engl J Med 342(18): 1334–1349

    Google Scholar 

  • Ward PA (2013) An endogenous factor mediates shock-induced injury. Nature medicine 19(11): 1368–1369

    Google Scholar 

  • Weigelt JA, Norcross JF, Borman KR, Snyder WH (1985) Early steroid therapy for respiratory failure. Arch Surg 120: 536–540

    Google Scholar 

  • Wutzler S, Lustenberger T, Relja B, et al. (2013) Pathophysiology of multiple trauma. Chirurg 84(9): 753–758

    Google Scholar 

  • Yealy DM, Kellum JA, Huang DT (2014) A randomized trial of protocol-based care for early septic shock. NEJM 370(18) 1683–1693

    Google Scholar 

  • Zwissler B, Kemming G, Habler O, et al. (1996) Inhaled prostacyclin (PGI2) vs. inhaled nitric oxide in adult respiratory distress syndrome. Am J Respir Crit Care Med 154: 1671–1677

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Martin , T. Schürholz , J. Bickenbach , G. Marx , L. Martin , T. Schürholz , G. Marx , J. Bickenbach or G. Marx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Martin, L., Schürholz, T., Bickenbach, J., Marx, G. (2018). Management von Komplikationen: Sepsis, Multiorganversagen, ARDS. In: Pape, HC., Hildebrand, F., Ruchholtz, S. (eds) Management des Schwerverletzten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54980-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54980-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54979-7

  • Online ISBN: 978-3-662-54980-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics