Skip to main content

Herz-Kreislauf-wirksame Medikamente in der Anästhesiologie

  • Chapter
  • First Online:
Die Anästhesiologie

Part of the book series: Springer Reference Medizin ((SRM))

  • 1796 Accesses

Zusammenfassung

Die medikamentöse Steuerung der Herz-Kreislauf-Funktionen stellt eine der zentralen Aufgaben für den Anästhesisten und Intensivmediziner dar. Die genaue Kenntnis von Pharmakologie und klinischer Indikation der zur Verfügung stehenden Substanzen ist daher essenziell. Dieses Kapitel gibt einen Überblick über die in der klinischen Praxis gängigen Medikamente zur Beeinflussung von Vasotonus, myokardialer Kontraktilität und des intrakardialen Erregungsleitungssystems. Neben Wirkmechanismus, Dosierung und wichtigen Nebenwirkungen wird insbesondere der klinische Stellenwert der einzelnen Pharmaka dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Bevilacqua M, Vago T, Monopoli A et al (1991) Alpha 1 adrenoceptor subtype mediates noradrenaline induced contraction of the human internal mammary artery: radioligand and functional studies. Cardiovasc Res 25:290–294

    CAS  PubMed  Google Scholar 

  2. Starke K, Endo T, Taube HD (1975) Relative pre- and postsynaptic potencies of alpha-adrenoceptor agonists in the rabbit pulmonary artery. Naunyn Schmiedebergs Arch Pharmacol 291:55–78

    CAS  PubMed  Google Scholar 

  3. Westfall TC, Westfall DP (2006) Goodman and Gillman’s the pharmacological basis of therapeutics, 11. Aufl. McGraw-Hill, New York. ISBN-10: 0071422803

    Google Scholar 

  4. Gille E, Lemoine H, Ehle B et al (1985) The affinity of (-)-propranolol for beta 1- and beta 2-adrenoceptors of human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (-)-noradrenaline and (-)-adrenaline. Naunyn Schmiedebergs Arch Pharmacol 331:60–70

    CAS  PubMed  Google Scholar 

  5. Kaumann AJ, Hall JA, Murray KJ et al (1989) A comparison of the effects of adrenaline and noradrenaline on human heart: the role of beta 1- and beta 2-adrenoceptors in the stimulation of adenylate cyclase and contractile force. Eur Heart J 10(Suppl B):29–37

    CAS  PubMed  Google Scholar 

  6. Kaumann AJ, Lemoine H (1987) Beta 2-adrenoceptor-mediated positive inotropic effect of adrenaline in human ventricular myocardium. Quantitative discrepancies with binding and adenylate cyclase stimulation. Naunyn Schmiedebergs Arch Pharmacol 335:403–411

    CAS  PubMed  Google Scholar 

  7. Lefkowitz RJ, O’hara DS, Warshaw J (1973) Binding of catecholamines to receptors in cultured myocardial cells. Nat New Biol 244:79–80

    CAS  PubMed  Google Scholar 

  8. Lemoine H, Schonell H, Kaumann AJ (1988) Contribution of beta 1- and beta 2-adrenoceptors of human atrium and ventricle to the effects of noradrenaline and adrenaline as assessed with (-)-atenolol. Br J Pharmacol 95:55–66

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weitl N, Seifert R (2008) Distinct interactions of human beta1- and beta2-adrenoceptors with isoproterenol, epinephrine, norepinephrine, and dopamine. J Pharmacol Exp Ther 327:760–769

    CAS  PubMed  Google Scholar 

  10. Williams LT, Snyderman R, Lefkowitz RJ (1976) Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding. J Clin Invest 57:149–155

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brodde OE (1988) The functional importance of beta 1 and beta 2 adrenoceptors in the human heart. Am J Cardiol 62:24C–29C

    CAS  PubMed  Google Scholar 

  12. Kaumann AJ, Lemoine H, Morris TH et al (1982) An initial characterization of human heart beta-adrenoceptors and their mediation of the positive inotropic effects of catecholamines. Naunyn Schmiedebergs Arch Pharmacol 319:216–221

    CAS  PubMed  Google Scholar 

  13. Lands AM, Luduena FP, Buzzo HJ (1967) Differentiation of receptors responsive to isoproterenol. Life Sci 6:2241–2249

    CAS  PubMed  Google Scholar 

  14. Bohm M, Diet F, Feiler G et al (1988) Alpha-adrenoceptors and alpha-adrenoceptor-mediated positive inotropic effects in failing human myocardium. J Cardiovasc Pharmacol 12:357–364

    CAS  PubMed  Google Scholar 

  15. Fedida D, Shimoni Y, Giles WR (1989) A novel effect of norepinephrine on cardiac cells is mediated by alpha 1-adrenoceptors. Am J Physiol 256:H1500–H1504

    CAS  PubMed  Google Scholar 

  16. Schmitz W, Kohl C, Neumann J et al (1989) On the mechanism of positive inotropic effects of alpha-adrenoceptor agonists. Basic Res Cardiol 84(Suppl 1):23–33

    PubMed  Google Scholar 

  17. Scholz H, Bruckner R, Mugge A et al (1986) Myocardial alpha-adrenoceptors and positive inotropy. J Mol Cell Cardiol 18(Suppl 5):79–87

    CAS  PubMed  Google Scholar 

  18. Giraud GD, Maccannell KL (1984) Decreased nutrient blood flow during dopamine- and epinephrine-induced intestinal vasodilation. J Pharmacol Exp Ther 230:214–220

    CAS  PubMed  Google Scholar 

  19. Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272:1354–1357

    CAS  PubMed  Google Scholar 

  20. Prielipp RC, Macgregor DA, Royster RL et al (1998) Dobutamine antagonizes epinephrine’s biochemical and cardiotonic effects: results of an in vitro model using human lymphocytes and a clinical study in patients recovering from cardiac surgery. Anesthesiology 89:49–57

    CAS  PubMed  Google Scholar 

  21. Clemens KE, Quednau I, Heller AR et al (2010) Impact of cafedrine/theodrenaline (Akrinor(R)) on therapy of maternal hypotension during spinal anesthesia for Cesarean delivery: a retrospective study. Minerva Ginecol 62:515–524

    CAS  PubMed  Google Scholar 

  22. Wallenborn J, German Society for Anesthesiology, Intensive Care Medicine et al (2010) Execution of analgesia and anesthesia procedures in obstetrics: second revised recommendations of the German Society for Anesthesiology and Intensive Care Medicine and the Professional Association of German Anesthetists in cooperation with the German Society for Gynecology and Obstetrics. Anaesthesist 59:250–254

    CAS  PubMed  Google Scholar 

  23. Erler I, Gogarten W (2007) Prevention and treatment of hypotension during Caesarean delivery. Anasthesiol Intensivmed Notfallmed Schmerzther 42:208–213

    PubMed  Google Scholar 

  24. Habib AS (2012) A review of the impact of phenylephrine administration on maternal hemodynamics and maternal and neonatal outcomes in women undergoing cesarean delivery under spinal anesthesia. Anesth Analg 114:377–390

    CAS  PubMed  Google Scholar 

  25. Ngan Kee WD, Khaw KS, Tan PE et al (2009) Placental transfer and fetal metabolic effects of phenylephrine and ephedrine during spinal anesthesia for cesarean delivery. Anesthesiology 111:506–512

    CAS  PubMed  Google Scholar 

  26. Stewart A, Fernando R, Mcdonald S et al (2010) The dose-dependent effects of phenylephrine for elective cesarean delivery under spinal anesthesia. Anesth Analg 111:1230–1237

    CAS  PubMed  Google Scholar 

  27. Lilleberg J, Nieminen MS, Akkila J et al (1998) Effects of a new calcium sensitizer, levosimendan, on haemodynamics, coronary blood flow and myocardial substrate utilization early after coronary artery bypass grafting. Eur Heart J 19:660–668

    CAS  PubMed  Google Scholar 

  28. Follath F, Cleland JG, Just H et al (2002) Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 360:196–202

    CAS  PubMed  Google Scholar 

  29. Eriksson HI, Jalonen JR, Heikkinen LO et al (2009) Levosimendan facilitates weaning from cardiopulmonary bypass in patients undergoing coronary artery bypass grafting with impaired left ventricular function. Ann Thorac Surg 87:448–454

    PubMed  Google Scholar 

  30. Morelli A, De Castro S, Teboul JL et al (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31:638–644

    PubMed  Google Scholar 

  31. Kerbaul F, Gariboldi V, Giorgi R et al (2007) Effects of levosimendan on acute pulmonary embolism-induced right ventricular failure. Crit Care Med 35:1948–1954

    CAS  PubMed  Google Scholar 

  32. Morelli A, Teboul JL, Maggiore SM et al (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293

    CAS  PubMed  Google Scholar 

  33. Koster G, Wetterslev J, Gluud C et al (2015) Effects of levosimendan for low cardiac output syndrome in critically ill patients: systematic review with meta-analysis and trial sequential analysis. Intensive Care Med 41:203–221

    CAS  PubMed  Google Scholar 

  34. Nieminen MS, Bohm M, Cowie MR et al (2005) Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J 26:384–416

    PubMed  Google Scholar 

  35. Rehberg S, Ertmer C, Van Aken H et al (2007) Role of Levosimendan in intensive care treatment of myocardial insufficiency. Anaesthesist 56:30–43

    CAS  PubMed  Google Scholar 

  36. Holmes CL, Patel BM, Russell JA et al (2001) Physiology of vasopressin relevant to management of septic shock. Chest 120:989–1002

    CAS  PubMed  Google Scholar 

  37. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595

    CAS  PubMed  Google Scholar 

  38. Asfar P, Radermacher P (2009) Vasopressin and ischaemic heart disease: more than coronary vasoconstriction? Crit Care 13:169

    PubMed  PubMed Central  Google Scholar 

  39. Leather HA, Segers P, Berends N et al (2002) Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med 30:2548–2552

    CAS  PubMed  Google Scholar 

  40. Russell JA, Walley KR, Singer J et al (2008) Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 358:877–887

    CAS  PubMed  Google Scholar 

  41. Dunser MW, Hasibeder WR, Wenzel V et al (2006) Arginine-vasopressin in septic and vasodilatorial shock. Anasthesiol Intensivmed Notfallmed Schmerzther 41:716–719

    PubMed  Google Scholar 

  42. Kampmeier TG, Rehberg S, Westphal M et al (2010) Vasopressin in sepsis and septic shock. Minerva Anestesiol 76:844–850

    CAS  PubMed  Google Scholar 

  43. Asfar P, Radermacher P, Cales P et al (2009) The effects of vasopressin and its analogues on the liver and its disorders in the critically ill. Curr Opin Crit Care 16:148–152

    Google Scholar 

  44. Link MS et al (2015) Part 7: Adult advanced cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132(18 Suppl 2):S444–S464

    PubMed  Google Scholar 

  45. Soar J et al (2015) Adult advanced life support. Notf Rettungsmed 18(8):770–832

    Google Scholar 

  46. Shanmugam G (2005) Vasoplegic syndrome – the role of methylene blue. Eur J Cardiothorac Surg 28:705–710

    PubMed  Google Scholar 

  47. Parlow JL, Sagnard P, Begou G et al (1999) The effects of clonidine on sensitivity to phenylephrine and nitroprusside in patients with essential hypertension recovering from surgery. Anesth Analg 88:1239–1243

    CAS  PubMed  Google Scholar 

  48. Wijeysundera DN, Bender JS, Beattie WS (2009) Alpha-2 adrenergic agonists for the prevention of cardiac complications among patients undergoing surgery. Cochrane Database Syst Rev (4):CD004126

    Google Scholar 

  49. Ellison KE, Gandhi G (2005) Optimising the use of beta-adrenoceptor antagonists in coronary artery disease. Drugs 65:787–797

    CAS  PubMed  Google Scholar 

  50. Freemantle N, Cleland J, Young P et al (1999) Beta Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ 318:1730–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ram CV (2010) Beta-blockers in hypertension. Am J Cardiol 106:1819–1825

    CAS  PubMed  Google Scholar 

  52. Mcalister FA, Wiebe N, Ezekowitz JA et al (2009) Meta-analysis: beta-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med 150:784–794

    PubMed  Google Scholar 

  53. Packer M, Coats AJ, Fowler MB et al (2001) Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 344:1651–1658

    CAS  PubMed  Google Scholar 

  54. Packer M, Fowler MB, Roecker EB et al (2002) Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 106:2194–2199

    PubMed  Google Scholar 

  55. Lindenauer PK, Pekow P, Wang K et al (2005) Perioperative beta-blocker therapy and mortality after major noncardiac surgery. N Engl J Med 353:349–361

    CAS  PubMed  Google Scholar 

  56. Poldermans D, Boersma E, Bax JJ et al (1999) The effect of bisoprolol on perioperative mortality and myocardial infarction in high-risk patients undergoing vascular surgery. Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography Study Group. N Engl J Med 341:1789–1794

    CAS  PubMed  Google Scholar 

  57. Strametz R, Zwissler B (2006) Perioperative administration of beta-blockers. Critical appraisal of recent meta-analyses. Anaesthesist 55:1197–1204

    CAS  PubMed  Google Scholar 

  58. Wijeysundera DN, Duncan D, Nkonde-Price C et al (2014) Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation 130:2246–2264

    CAS  PubMed  Google Scholar 

  59. Group PS, Devereaux PJ, Yang H et al (2008) Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371:1839–1847

    Google Scholar 

  60. Kupatt C, Habazettl H, Zahler S et al (1997) ACE-inhibition prevents postischemic coronary leukocyte adhesion and leukocyte-dependent reperfusion injury. Cardiovasc Res 36:386–395

    CAS  PubMed  Google Scholar 

  61. Yang B, Li D, Phillips MI et al (1998) Myocardial angiotensin II receptor expression and ischemia-reperfusion injury. Vasc Med 3:121–130

    CAS  PubMed  Google Scholar 

  62. Zahler S, Kupatt C, Becker BF (1999) ACE-inhibition attenuates cardiac cell damage and preserves release of NO in the postischemic heart. Immunopharmacology 44:27–33

    CAS  PubMed  Google Scholar 

  63. Mclaughlin VV, Mcgoon MD (2006) Pulmonary arterial hypertension. Circulation 114:1417–1431

    PubMed  Google Scholar 

  64. Ghofrani HA, Distler O, Gerhardt F et al (2011) Treatment of pulmonary arterial hypertension (PAH): updated recommendations of the Cologne Consensus Conference 2011. Int J Cardiol 154(Suppl 1):S20–S33

    PubMed  Google Scholar 

  65. Mubarak KK (2010) A review of prostaglandin analogs in the management of patients with pulmonary arterial hypertension. Respir Med 104:9–21

    PubMed  Google Scholar 

  66. Ruan CH, Dixon RA, Willerson JT et al (2010) Prostacyclin therapy for pulmonary arterial hypertension. Tex Heart Inst J 37:391–399

    PubMed  PubMed Central  Google Scholar 

  67. Flondor M, Merkel M, Hofstetter C et al (2006) The effect of inhaled nitric oxide and inhaled iloprost on hypoxaemia in a patient with pulmonary hypertension after pulmonary thrombarterectomy. Anaesthesia 61:1200–1203

    CAS  PubMed  Google Scholar 

  68. Rex S, Schaelte G, Metzelder S et al (2008) Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: a prospective, randomized-controlled trial. Acta Anaesthesiol Scand 52:65–72

    CAS  PubMed  Google Scholar 

  69. Sawheny E, Ellis AL, Kinasewitz GT (2013) Iloprost improves gas exchange in patients with pulmonary hypertension and ARDS. Chest 144:55–62

    CAS  PubMed  Google Scholar 

  70. Galie N, Ghofrani HA, Torbicki A et al (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353:2148–2157

    CAS  PubMed  Google Scholar 

  71. Xu Y, Liu Y, Liu J et al (2014) Meta-analysis of clinical efficacy of sildenafil, a phosphodiesterase type-5 inhibitor on high altitude hypoxia and its complications. High Alt Med Biol 15:46–51

    CAS  PubMed  Google Scholar 

  72. Ghofrani HA, D’armini AM, Grimminger F et al (2013) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369:319–329

    CAS  PubMed  Google Scholar 

  73. Ghofrani HA, Galie N, Grimminger F et al (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369:330–340

    CAS  PubMed  Google Scholar 

  74. Hentschel T, Yin N, Riad A et al (2007) Inhalation of the phosphodiesterase-3 inhibitor milrinone attenuates pulmonary hypertension in a rat model of congestive heart failure. Anesthesiology 106:124–131

    CAS  PubMed  Google Scholar 

  75. Laflamme M, Perrault LP, Carrier M et al (2015) Preliminary experience with combined inhaled milrinone and prostacyclin in cardiac surgical patients with pulmonary hypertension. J Cardiothorac Vasc Anesth 29:38–45

    CAS  PubMed  Google Scholar 

  76. Wang H, Gong M, Zhou B et al (2009) Comparison of inhaled and intravenous milrinone in patients with pulmonary hypertension undergoing mitral valve surgery. Adv Ther 26:462–468

    CAS  PubMed  Google Scholar 

  77. Echt DS, Liebson PR, Mitchell LB et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324:781–788

    CAS  PubMed  Google Scholar 

  78. Connolly SJ (1999) Meta-analysis of antiarrhythmic drug trials. Am J Cardiol 84:90R–93R

    CAS  PubMed  Google Scholar 

  79. Deakin CD, Nolan JP, Soar J et al (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation 81:1305–1352

    PubMed  Google Scholar 

  80. Neumar RW, Otto CW, Link MS et al (2010) Part 8: adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122:S729–S767

    PubMed  Google Scholar 

  81. Furberg CD, Psaty BM, Meyer JV (1995) Nifedipine. Dose-related increase in mortality in patients with coronary heart disease. Circulation 92:1326–1331

    CAS  PubMed  Google Scholar 

  82. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Irlbeck .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irlbeck, M., Irlbeck, M., Zwißler, B. (2019). Herz-Kreislauf-wirksame Medikamente in der Anästhesiologie. In: Rossaint, R., Werner, C., Zwißler, B. (eds) Die Anästhesiologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54507-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54507-2_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54505-8

  • Online ISBN: 978-3-662-54507-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics