Skip to main content

High Volume Manufacturing and Field Stability of MEMS Products

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

Low-volume microelectromechanical systems (GlossaryTerm

MEMS

)/nanoelectromechanical systems (GlossaryTerm

NEMS

) production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high-volume production adds requirements on design, process control, quality, product stability, market size, market maturity, internal capacity, and capital investment or transfer to foundry and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers and gyroscopes that are in high-volume production. What is described here also applies to other MEMS products such as pressure sensors, image projection systems, microphones, etc. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard well-controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. When transferring to an external foundry, existing processes are modified to utilize the foundry equipment and processes where possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products, partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high-volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost – a result that is normally achieved only after a product is in high-volume production. During the early years, IC companies reduce cost and financial risk by using existing facilities for low-volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. MEMS devices have extremely high surface-to-volume ratio, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers is decreasing because MEMS foundries are growing and small companies are learning to integrate MEMS/NEMS devices with die from CMOS foundries in one package. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Martin: High volume manufacturing and field stability of MEMS products. In: Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2010)

    Google Scholar 

  2. TSensors Summit – MEMS Industry Group Enterprise, http://www.tsensorssummit.org/Resources/TSensors%20Roadmap%20v1.pdf

  3. T.A. Core, W.K. Tsang, S.J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol 36(10), 39–47 (1993)

    Google Scholar 

  4. K. Nunan, G. Ready, J. Sledziewski: LPCVD & PECVD operations designed for iMEMS sensor devices, Vac. Technol. Coat. 2(1), 26–37 (2001)

    Google Scholar 

  5. K.H. Chau, R.E. Suloff: Technology for the high-volume manufacturing of integrated surface-micromachined accelerometer products, Microelectron. J. 29, 579–586 (1998)

    Article  Google Scholar 

  6. W. Kuenel, S. Sherman: A surface micromachined silicon accelerometer with on-chip detection circuitry, Sens. Actuators Phys. 45(1), 7–16 (1994)

    Article  Google Scholar 

  7. M. Schirmer, R. Goggin, P. Fitzgerald, D. Rohan, J.-E. Wong: MEMS Switch Capping and Passivation Method. US Patent 8124436 (2012)

    Google Scholar 

  8. L.E. Felton, P.W. Farrell, J. Luo, D.J. Collins, J.R. Martin, W.A. Webster: MEMS Capping Method and Apparatus. US Patent 6893574 (2005)

    Google Scholar 

  9. J.R. Martin: Process for Wafer Level Treatment to Reduce Stiction and Passivate Micromachined Surfaces and Compounds Used Therefor. US Patent 6674140 (2004)

    Google Scholar 

  10. A. Solanki, K. Prasad, K. Nunan, R. Oreilly: Comparing process flow of monolithic CMOS-MEMS integration on SOI wafers with monolithic BiMOS-MEMS integration on Silicon wafers, iMEMS fabrication incorporating MEMS and electronics on a single chip. In: Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst. (2010) doi:10.1109/MWSCAS.2010.5548876

    Chapter  Google Scholar 

  11. S. Lewis, S. Alie, T. Brosnihan, C. Core, T. Core, R. Howe, J. Geen, D. Hollocher, M. Judy, J. Memishian, K. Nunan, R. Paine, S. Sherman, B. Tsang, B. Wachtman: Integrated sensor and electronics processing for >108 iMEMS inertial measurement unit components. In: Proc. IEEE Int. Electron Devices Meet (2003) doi:10.1109/IEDM.2003.1269435

    Chapter  Google Scholar 

  12. G.K. Fedder, J. Chae, K. Najafi, T. Denison, J. Kuang, S. Lewis: Monolithically integrated inertial sensors. In: CMOS-MEMS, ed. by O. Brand, G.K. Fedder (Wiley-VCH, Weinheim 2005)

    Google Scholar 

  13. D. Hollocher, X. Zhang, A. Sparks, S. Bart, W. Sawyer, P. Narayanasamy, C. Pipitone, J. Memishian, H. Samuels, S.-L. Ng, R. Mhatre, D. Whitley, F. Sammoura, M. Bhagavat, C. Tsau, K. Nunan, M. Judy, M. Farrington, K. Yang: A very low cost, 3-axis, MEMS accelerometer for consumer applications. In: Proc. IEEE Sens (2009) pp. 953–957 doi:10.1109/ICSENS.2009.5398189

    Chapter  Google Scholar 

  14. T.K. Nunan: Polysilicon Deposition and Anneal Process Enabling Thick Polysilcon Films for MEMS Applications. US Patent 7754617 (2008)

    Google Scholar 

  15. S. Sood: CMOS Compatible Hermetic Wafer Level Packaging for Inertial MEMS (SUSS MicroTech Inc, Sunnyvale 2013)

    Google Scholar 

  16. MEMS Industry Group: http://www.semi.org/en/msig-information-hub

  17. MEMS Industrial Group's Foundry Engagement Guide Steering Committee: http://memsfoundry.wikia.com/wiki/MEMS_Foundry_Engagement_Guide_Wiki

  18. Yole: Yole MEMS & Sensors Industry Reports, http://www.i-micronews.com/reports/mems-sensors-report.html

  19. SystemPlus Consulting: MEMS Accelerometer Reports, (2016) http://www.systemplus.fr/device-type/accelerometer

  20. D.M. Anderson: Design for Manufacturability (CRC Press, Boca Raton 2014)

    Google Scholar 

  21. M.G. da Silva, R. Giasolli, S. Cunningham, D. DeRoo: MEMS design for manufacturability. In: Sensors Expo, Boston (2002)

    Google Scholar 

  22. P. Doe: New approaches needed to sustain MEMS growth, (2015) http://www.semi.org/en/node/56321 (originally published in EE Times)

  23. A.L. Hartzell, M.G. da Silva, H. Shea: MEMS Reliability (Springer, New York 2011)

    Book  Google Scholar 

  24. G. Schropfer, M. McNie, M.G. da Silva, R. Davies, A. Rickard, F.X. Musalem: Designing manufacturable MEMS in CMOS compatible processes – Methodology and case studies, Proc. SPIE (2004) doi:10.1117/12.544971

  25. B. Romanowicz, M.H. Zaman, S.F. Bart, V.L. Rabinovich, I. Tchertkov, C. Hsu, J.R. Gilbert: A methodology and associated CAD tools for Support of concurrent design of MEMS. In: VLSI: Systems on a Chip, ed. by L.M. Silveira, S. Devadas, R.A. Reis (Springer, New York 2000)

    Google Scholar 

  26. S. Maity, S. Liu, S. Rouvillois, G. Lorenz, M. Kamon: Rapidly analyzing parametric resonance and manufacturing yield of MEMS 2D scanning mirrors using hybrid finite-element/behavioral modeling, Proc. SPIE (2014) doi:10.1117/12.2041067

  27. M.G. da Silva, S. Bouwstra: Critical comparison of metrology techniques for MEMS, Proc. SPIE (2007) doi:10.1117/12.714852

  28. L.E. Felton, N. Hablutzel, W.A. Webster, K.P. Harney: Chip scale packaging of a MEMS accelerometer. In: Proc. 54th Electron. Compon. Technol. Conf. (2004) doi:10.1109/ECTC.2004.1319439

    Chapter  Google Scholar 

  29. MEMS Industry Group: Foundry Engagement Guide, MEMS Industry Group (2016) http://www.memsindustrygroup.org/?page=FoundryEngagement

  30. M.J. Madou: Fundamentals of Microfabrication (CRC Press, Boca Raton 2000)

    Google Scholar 

  31. T. Rogers, N. Aitken, K. Stribley, J. Boyd: Improvements in MEMS gyroscope production as a result of using in situ, aligned, current-limited anodic bonding, Sens. Actuators A 123/124, 106–110 (2005)

    Article  Google Scholar 

  32. M.R. Douglass: DMD reliability: A MEMS success story, Proc. SPIE (2003) doi:10.1117/12.478212

  33. R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1 (1997)

    Article  Google Scholar 

  34. C.H. Mastrangelo: Surface force induced failures in microelectromechanical systems. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 367–395

    Chapter  Google Scholar 

  35. R. Maboudian, R.T. Howe: Stiction reduction processes for surface micromachines, Tribology Lett 3(3), 215–221 (1997)

    Article  Google Scholar 

  36. C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces: Part I. Basic theory, J. Microelectromech. Syst. 2(1), 33–43 (1993)

    Article  Google Scholar 

  37. C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces: Part II. Experiments, J. Microelectromech. Syst. 2(1), 44–55 (1993)

    Article  Google Scholar 

  38. W.M. van Spengen, R. Puers, I. De Wolf: A physical model to predict stiction in MEMS, J. Micromech. Microeng. 12, 702–713 (2002)

    Article  Google Scholar 

  39. A.C. Fischer, F. Forsberg, M. Lapisa, S.J. Bleiker, G. Stemme, N. Roxshed, F. Niklaus: Integrating MEMS and ICs, Microsyst. Nanoneng. (2015) doi:10.1038/micronano.2015.5

  40. C.A. Bower, E. Menard, S. Bonafede, S. Burroughs: Transfer-printed microscale integrated circuits. In: Proc. Electron. Compon. Technol. Conf. (2009) doi:10.1109/ECTC.2009.5074077

    Chapter  Google Scholar 

  41. A. Technology Corporation: Fluidic Self-Assemby White Paper (Allen Technology Corporation, Addison 1999)

    Google Scholar 

  42. T. Fukushima, H. Hashiguchi, J. Bea, Y. Ohara, M. Murugesan, K.-W. Lee, T. Tanaka, M. Koyanagi: New chip-to-wafer 3D integration technology using hybrid self-assembly and electrostatic temporary bonding. In: Proc. IEEE Int. Electron Dev. Meet. (IEDM) (2012) doi:10.1109/IEDM.2012.6479157

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Nunan, T.K., da Silva, M.G. (2017). High Volume Manufacturing and Field Stability of MEMS Products. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics