Skip to main content

Comprehensive Approach to Patellofemoral Chondral Lesion Treatments

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Cartilage lesions frequently involve the patellofemoral joint. Damage from blunt trauma, patellar dislocation and/or degenerative pathology frequently results in gradual articular cartilage deterioration leading to debilitating joint pain, functional impairment, and osteoarthritis. Currently, the standard surgical procedure for end-stage degenerative joint disease is joint arthroplasty. Due to the limitations imposed by the arthroplasty, a biological restoration approach earlier in the disease process is desirable for young and active patients. The pathoanatomy, biomechanics and cartilage thickness are unique to the patellofemoral compartment and must be addressed in a comprehensive manner concomitantly with cartilage restoration. Recognition and correction of these unique features of the PF compartment are critical to the optimization of clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felson DT, Naimark A, Anderson J, Kazis L. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 1987;30:914–8.

    Article  CAS  PubMed  Google Scholar 

  2. Duncan RC. Prevalence of radiographic osteoarthritis—it all depends on your point of view. Rheumatology. 2006;45:757–60.

    Article  CAS  PubMed  Google Scholar 

  3. Hinman RS, Lentzos J, Vicenzino B, Crossley KM. Is patellofemoral osteoarthritis common in middle-aged people with chronic patellofemoral pain? Arthritis Care Res. 2014;66:1252–7.

    Article  Google Scholar 

  4. Kobayashi S, Pappas E, Fransen M, Refshauge K, Simic M. The prevalence of patellofemoral osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil. 2016;24:1697–707.

    Article  CAS  PubMed  Google Scholar 

  5. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–60.

    Article  CAS  PubMed  Google Scholar 

  6. Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy. 2003;19:717–21.

    Article  PubMed  Google Scholar 

  7. Wang HJ, Ao YF, Jiang D, Gong X, Wang YJ, Wang J, Yu JK. Relationship between quadriceps strength and patellofemoral joint chondral lesions after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43:2286–92.

    Article  PubMed  Google Scholar 

  8. Hsu WK, Mishra A, Rodeo SR, Fu F, Terry MA, Randelli P, Canale ST, Kelly FB. Platelet-rich plasma in orthopaedic applications: evidence-based recommendations for treatment. J Am Acad Orthop Surg. 2013;21:739–48.

    PubMed  Google Scholar 

  9. Campbell KA, Saltzman BM, Mascarenhas R, Khair MM, Verma NN, Bach BR, Cole BJ. Does intra-articular platelet-rich plasma injection provide clinically superior outcomes compared with other therapies in the treatment of knee osteoarthritis? A systematic review of overlapping meta-analyses. Arthroscopy. 2015;31:2213–21.

    Article  PubMed  Google Scholar 

  10. Meheux CJ, McCulloch PC, Lintner DM, Varner KE, Harris JD. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: a systematic review. Arthroscopy. 2016;32:495–505.

    Article  PubMed  Google Scholar 

  11. Smith PA. Intra-articular autologous conditioned plasma injections provide safe and efficacious treatment for knee osteoarthritis: an FDA-sanctioned, randomized, double-blind, placebo-controlled clinical trial. Am J Sports Med. 2016;44:884–91.

    Article  PubMed  Google Scholar 

  12. Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthroscopy Tech. 2012;1:e175–80.

    Article  Google Scholar 

  13. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage. 2015;6:82–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage. 2011;2:286–99.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Centeno C, Pitts J, Al-Sayegh H, Freeman M. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. Biomed Res Int. 2014;2014:370621–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hauser RA, Orlofsky A. Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series. Clin Med Insights Arthritis Musculoskelet Disord. 2013;6:65–72.

    PubMed  PubMed Central  Google Scholar 

  17. Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42:648–57.

    Article  PubMed  Google Scholar 

  18. Payne KA, Didiano DM, Chu CR. Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthr Cartil. 2010;18:705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim J-D, Lee GW, Jung G-H, Kim CK, Kim T, Park JH, Cha SS, You Y-B. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol. 2014;24:1505–11.

    Article  PubMed  Google Scholar 

  20. Marmotti A, Rossi R, Castoldi F, Roveda E, Michielon G, Peretti GM. PRP and articular cartilage: a clinical update. Biomed Res Int. 2015;2015:542502–19.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med. 2016;4:2325967115625481.

    PubMed  PubMed Central  Google Scholar 

  22. Canaider S, Maioli M, Facchin F, Bianconi E. Human stem cell exposure to developmental stage zebrafish extracts: a novel strategy for tuning stemness and senescence patterning. Cell R4. 2014;2:e1226.

    Google Scholar 

  23. Huang JI, Beanes SR, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg. 2002;109:1033–41. Discussion 1042–3

    Article  PubMed  Google Scholar 

  24. Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res. 2009;27:1675–80.

    Article  PubMed  Google Scholar 

  25. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327:449–62.

    Article  CAS  PubMed  Google Scholar 

  26. Tremolada C, Colombo V, Ventura C. Adipose tissue and mesenchymal stem cells: state of the art and Lipogems® technology development. Curr Stem Cell Rep. 2016;2:304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kolambkar YM, Peister A, Soker S, Atala A, Guldberg RE. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol. 2007;38:405–13.

    Article  CAS  PubMed  Google Scholar 

  28. Vines JB, Aliprantis AO, Gomoll AH, Farr J. Cryopreserved amniotic suspension for the treatment of knee osteoarthritis. J Knee Surg. 2016;29:443–50.

    Article  PubMed  Google Scholar 

  29. Flynn JM, Kocher MS, Ganley TJ. Osteochondritis dissecans of the knee. J Pediatr Orthop. 2004;24:434–43.

    Article  PubMed  Google Scholar 

  30. Kramer DE, Yen YM, Simoni MK, Miller PE, Micheli LJ, Kocher MS, Heyworth BE. Surgical management of osteochondritis dissecans lesions of the patella and trochlea in the pediatric and adolescent population. Am J Sports Med. 2015;43:654–62.

    Article  PubMed  Google Scholar 

  31. Anderson CN, Magnussen RA, Block JJ, Anderson AF, Spindler KP. Operative fixation of chondral loose bodies in osteochondritis dissecans in the knee: a report of 5 cases. Orthop J Sports Med. 2013;1:1–8.

    Article  Google Scholar 

  32. Kusano T, Jakob RP, Gautier E, Magnussen RA, Hoogewoud H, Jacobi M. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc. 2011;20:2109–15.

    Article  PubMed  Google Scholar 

  33. Gille J, Behrens P, Volpi P, de Girolamo L, Reiss E, Zoch W, Anders S. Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC registry. Arch Orthop Trauma Surg. 2012;133:87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Buckwalter JA, Bowman GN, Albright JP, Wolf BR, Bollier M. Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. Iowa Orthop J. 2014;34:44–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Farr J, Yao JQ. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2011;2:346–53.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Garretson RB. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med. 2004;32:967–74.

    Article  PubMed  Google Scholar 

  37. Al-Shaikh RA, Chou LB, Mann JA, Dreeben SM, Prieskorn D. Autologous osteochondral grafting for talar cartilage defects. Foot Ankle Int. 2002;23:381–9.

    Article  PubMed  Google Scholar 

  38. Paul J. Donor-site morbidity after osteochondral autologous transplantation for lesions of the talus. J Bone Joint Surg Am. 2009;91:1683–6.

    Article  CAS  PubMed  Google Scholar 

  39. Nishimura A, Morita A, Fukuda A, Kato K, Sudo A. Functional recovery of the donor knee after autologous osteochondral transplantation for capitellar osteochondritis dissecans. Am J Sports Med. 2011;39:838–42.

    Article  PubMed  Google Scholar 

  40. Hangody L, Feczkó P, Bartha L, Bodó G, Kish G. Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res. 2001;391:S328–36.

    Article  Google Scholar 

  41. Reddy S, Pedowitz DI, Parekh SG, Sennett BJ, Okereke E. The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. Am J Sports Med. 2006;35:80–5.

    Article  PubMed  Google Scholar 

  42. Astur DC, Arliani GG, Binz M, Astur N, Kaleka CC, Amaro JT, Pochini A, Cohen M. Autologous osteochondral transplantation for treating patellar chondral injuries: evaluation, treatment, and outcomes of a two-year follow-up study. J Bone Joint Surg Am. 2014;96:816–23.

    Article  PubMed  Google Scholar 

  43. Astur DC, Bernardes A, Castro S, Arliani GG, Kaleka CC, Astur N, Cohen NM. Functional outcomes after patellar autologous osteochondral transplantation. Knee Surg Sports Traumatol Arthrosc. 2016; doi:10.1007/s00167-016-4108-z.

    Google Scholar 

  44. Chadli L, Cottalorda J, Delpont M, Mazeau P, Thouvenin Y, Louahem D. Autologous osteochondral mosaicplasty in osteochondritis dissecans of the patella in adolescents. Int Orthop. 2016; doi:10.1007/s00264-016-3198-z.

    PubMed  Google Scholar 

  45. Gomoll AH, Farr J, Hinckel B. Patellofemoral osteochondral allograft transplantation. Oper Tech Sports Med. 2015;23:150–6.

    Article  Google Scholar 

  46. Torga Spak R, Teitge RA. Fresh osteochondral allografts for patellofemoral arthritis. Clin Orthop Relat Res. 2006;443:193–200.

    Google Scholar 

  47. Gracitelli GC, Meric G, Pulido PA, Gortz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for isolated patellar cartilage injury. Am J Sports Med. 2015;43:879–84.

    Article  PubMed  Google Scholar 

  48. Cameron JI, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation of the femoral trochlea. Am J Sports Med. 2016;44:633–8.

    Article  PubMed  Google Scholar 

  49. Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res. 2001;391:S349.

    Article  Google Scholar 

  50. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010;38:1117–24.

    Article  PubMed  Google Scholar 

  51. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.

    Article  CAS  PubMed  Google Scholar 

  52. Minas T, Bryant T. The role of autologous chondrocyte implantation in the patellofemoral joint. Clin Orthop Relat Res. 2005;436:30–9.

    Article  Google Scholar 

  53. Farr J. Autologous chondrocyte implantation improves patellofemoral cartilage treatment outcomes. Clin Orthop Relat Res. 2007;463:187–94.

    PubMed  Google Scholar 

  54. Gobbi A, Kon E, Berruto M, Francisco R, Filardo G, Marcacci M. Patellofemoral full-thickness chondral defects treated with hyalograft-c: a clinical, arthroscopic, and histologic review. Am J Sports Med. 2006;34:1763–73.

    Article  PubMed  Google Scholar 

  55. Niemeyer P, Lenz P, Kreuz PC, Salzmann GM, Südkamp NP, Schmal H, Steinwachs M. Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation: prospective 2-year results in patients with cartilage defects of the knee joint. Arthroscopy. 2010;26:1074–82.

    Article  PubMed  Google Scholar 

  56. Gomoll AH, Gillogly SD, Cole BJ, Farr J, Arnold R, Hussey K, Minas T. Autologous chondrocyte implantation in the patella: a multicenter experience. Am J Sports Med. 2014;42:1074–81.

    Article  PubMed  Google Scholar 

  57. Zlotnicki JP, Geeslin AG, Murray IR, Petrigliano FA, LaPrade RF, Mann BJ, Musahl V. Biologic treatments for sports injuries II think tank—current concepts, future research, and barriers to advancement, part 3: articular cartilage. Orthop J Sports Med. 2016;4:2325967116642433.

    Article  PubMed  PubMed Central  Google Scholar 

  58. McCormack RA, Shreve M, Strauss EJ. Biologic augmentation in rotator cuff repair—should we do it, who should get it, and has it worked? Bull Hosp Jt Dis. 2014;72:89–96.

    Google Scholar 

  59. Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc. 2013;21:1717–29.

    Article  PubMed  Google Scholar 

  60. Mosna F, Sensebé L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 2010;19:1449–70.

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura T, Sekiya I, Muneta T, et al. Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy. 2012;14:327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dragoo JL, Carlson G, McCormick F, Khan-Farooqi H, Zhu M, Zuk PA, Benhaim P. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng. 2007;13:1615–21.

    Article  CAS  PubMed  Google Scholar 

  63. Masuoka K, Asazuma T, Hattori H, Yoshihara Y, Sato M, Matsumura K, Matsui T, Takase B, Nemoto K, Ishihara M. Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits. J Biomed Mater Res B Appl Biomater. 2006;79:25–34.

    Article  PubMed  Google Scholar 

  64. Krych AJ, Nawabi DH, Farshad-Amacker NA, Jones KJ, Maak TG, Potter HG, Williams RJ. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control. Am J Sports Med. 2016;44:91–8.

    Article  PubMed  Google Scholar 

  65. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, Stokol T, Cheetham J, Nixon AJ. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92:1927–37.

    Article  PubMed  Google Scholar 

  66. Farr J, Gomoll AH. Patellofemoral considerations: pain, instability, chondrosis, and alignment. In: Farr J, Gomoll AH, editors. Cartilage restoration: practical clinical applications. New York: Springer; 2014. p. 71–93.

    Chapter  Google Scholar 

  67. Sherman SL, Erickson BJ, Cvetanovich GL, Chalmers PN, Farr J, Bach BR, Cole BJ. Tibial tuberosity osteotomy: indications, techniques, and outcomes. Am J Sports Med. 2013;42:2006–17.

    Article  PubMed  Google Scholar 

  68. Fulkerson JP. Anteromedialization of the tibial tuberosity for patellofemoral malalignment. Clin Orthop Relat Res. 1983;177:176–81.

    Google Scholar 

  69. Pidoriano AJA, Weinstein RNR, Buuck DAD, Fulkerson JPJ. Correlation of patellar articular lesions with results from anteromedial tibial tubercle transfer. Am J Sports Med. 1997;25:533–7.

    Article  CAS  PubMed  Google Scholar 

  70. Maquet P. Advancement of the tibial tuberosity. Clin Orthop Relat Res. 1976;115:225–30.

    Google Scholar 

  71. Cohen ZA, Roglic H, Grelsamer RP, Henry JH, Levine WN, Mow VC, Ateshian GA. Patellofemoral stresses during open and closed kinetic chain exercises. An analysis using computer simulation. Am J Sports Med. 2001;29:480–7.

    CAS  PubMed  Google Scholar 

  72. Rue J-PH, Colton A, Zare SM, Shewman E, Farr J, Bach BR, Cole BJ. Trochlear contact pressures after straight anteriorization of the tibial tuberosity. Am J Sports Med. 2008;36:1953–9.

    Article  PubMed  Google Scholar 

  73. Farr J, Gomoll AH. Patellofemoral osteotomies. In: Farr J, Gomoll AH, editors. Cartilage restoration: practical clinical applications. New York: Springer; 2014. p. 187–9.

    Chapter  Google Scholar 

  74. Pascual-Garrido C, Slabaugh MA, L’Heureux DR, Friel NA, Cole BJ. Recommendations and treatment outcomes for patellofemoral articular cartilage defects with autologous chondrocyte implantation: prospective evaluation at average 4-year follow-up. Am J Sports Med. 2009;37(Suppl 1):33S–41S.

    Article  PubMed  Google Scholar 

  75. Vasiliadis HS, Lindahl A, Georgoulis AD, Peterson L. Malalignment and cartilage lesions in the patellofemoral joint treated with autologous chondrocyte implantation. Knee Surg Sports Traumatol Arthrosc. 2011;19:452–7.

    Article  PubMed  Google Scholar 

  76. Trinh TQ, Harris JD, Siston RA, Flanigan DC. Improved outcomes with combined autologous chondrocyte implantation and patellofemoral osteotomy versus isolated autologous chondrocyte implantation. Arthroscopy. 2013;29:566–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Farr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Ambra, L.F.M., Gomoll, A.H., Abyar, E., Farr, J. (2017). Comprehensive Approach to Patellofemoral Chondral Lesion Treatments. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics