Skip to main content

Stem Cells in Joint Repair

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Autologous cellular therapies have been introduced in the treatment of articular cartilage defects in 1994 by Brittberg et al. [1] Indeed, autologous chondrocyte implantation (ACI) has been proven to restore hyaline-like articular surface, which is mechanically and functionally stable even in athletes at long-term follow-up. However, despite the breakthrough merit of the original procedure, it showed some issues such as local morbidity for periosteal harvest, complications related to the use of periosteum as a cover, and uncertain distribution of the cell suspension. In particular, the possible periosteal patch hypertrophy and the potential degenerative changes of chondrocyte that have been extensively passaged in vitro [2] prompted the development of improved and alternative techniques to overcome these limitations [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brittberg M, Lindahl A, Peterson L, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  2. Knutsen G, Engebretsen L, Johansen O, et al. Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial. J Bone Joint Surg Am. 2004;86(3):455–64.

    Article  PubMed  Google Scholar 

  3. Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978;15(4):1313–21.

    Article  CAS  PubMed  Google Scholar 

  4. Marcacci M, Kon E, Hollander AP, et al. Arthroscopic second generation autologous chondrocyte implantation. Knee Surg Sports Traumatol Arthrosc. 2007;15(5):610–9.

    Article  PubMed  Google Scholar 

  5. Zheng MH, Willers C, Shimmin A, et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng. 2007;13(4):737–46.

    Article  CAS  PubMed  Google Scholar 

  6. La Prade FR, Botker JC. Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy. 2004;20(7):e69–73.

    Article  Google Scholar 

  7. Hickery MS, Bayliss MT, Pitsillides AA, et al. Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J Biol Chem. 2003;278:53063–71.

    Article  CAS  PubMed  Google Scholar 

  8. Lee KD, Kuo TK, Lee OK, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004;40(6):1275–84.

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez-Ramos J, Song S, Sanberg PR, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56.

    Google Scholar 

  10. Tohill M, Mantovani C, Terenghi G, et al. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3.

    Article  CAS  PubMed  Google Scholar 

  11. Wakitani S, Goto T, Goldberg VM, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76(4):579–92.

    Article  CAS  PubMed  Google Scholar 

  12. Wakitani S, Mitsuoka T, Horibe S, et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant. 2004;13(5):595–600.

    Article  PubMed  Google Scholar 

  13. Nejadnik H, Hui JH, Lee EH, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.

    Article  PubMed  Google Scholar 

  14. Emadedin M, Aghdami N, Baghaban Eslaminejad M, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.

    PubMed  Google Scholar 

  15. Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016 Jul;29

    Google Scholar 

  16. Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2016;14

    Google Scholar 

  17. Strioga M, Viswanathan S, Michalek J, Strioga M, et al. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21(14):2724–52.

    Article  CAS  PubMed  Google Scholar 

  18. Dmitrieva RI, Minullina IR, Zaritskey AY, et al. Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell Cycle. 2012;11(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  19. Jo CH, Lee YG, Yoon KS, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.

    Article  CAS  PubMed  Google Scholar 

  20. De Bari C, Dell'Accio F, Luyten FP, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.

    Article  PubMed  Google Scholar 

  21. Sakaguchi Y, Sekiya I, Muneta T, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52(8):2521–9.

    Article  PubMed  Google Scholar 

  22. Candrian C, Vonwil D, Barbero A, Bonacina E, Miot S, Farhadi J, Wirz D, Dickinson S, Hollander A, Jakob M, Li Z, Alini M, Heberer M, Martin I. Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum. 2008;58(1):197–208.

    Article  CAS  PubMed  Google Scholar 

  23. Rotter N, Bonassar LJ, Tobias G, Lebl M, Roy AK, Vacanti CA. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials. 2002;23(15):3087–94.

    Article  CAS  PubMed  Google Scholar 

  24. Scotti C, Osmokrovic A, Wolf F, Miot S, Peretti GM, Barbero A, Martin I. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng Part A. 2012;18(3-4):362–72.

    Article  CAS  PubMed  Google Scholar 

  25. Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, Asnaghi AM, Baumhoer D, Bieri O, Kretzschmar M, Pagenstert G, Haug M, Schaefer DJ, Martin I, Jakob M. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 2016;388(10055):1985–94.

    Article  CAS  PubMed  Google Scholar 

  26. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  CAS  PubMed  Google Scholar 

  27. Thomson JA, Itskovitz-Eldor J, Jones JM, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  28. Toh WS, Guo XM, Cao T, et al. Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. J Cell Mol Med. 2009;13:3570–90.

    Google Scholar 

  29. Koay EJ, Athanasiou KA. Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality. Osteoarthritis Cartilage. 2008;16(12):1450–6.

    Article  CAS  PubMed  Google Scholar 

  30. Terraciano V, Hwang N, Elisseeff J, et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells. 2007;25(11):2730–8.

    Article  CAS  PubMed  Google Scholar 

  31. Chung Y, Klimanskaya I, Lanza R, et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature. 2006;439(7073):216–9.

    Article  CAS  PubMed  Google Scholar 

  32. Wu DC, Boyd AS, Wood KJ. Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells. 2008;26(8):1939–50.

    Article  PubMed  Google Scholar 

  33. Wakitani S, Takaoka K, Tanigami A, et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford). 2003;42(1):162–5.

    Article  CAS  Google Scholar 

  34. Brederlau A, Correia AS, Li JY, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells. 2006;24(6):1433–40.

    Google Scholar 

  35. Chung S, Shin BS, Kim KS, et al. Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem. 2006;97:1467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bieberich E, Silva J, Condie BG, et al. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol. 2004;167:723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  38. Nakagawa M, Koyanagi M, Yamanaka S, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  39. Nakagawa M, Takizawa N, Yamanaka S, et al. Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A. 2010;107(32):14152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaji K, Norrby K, Woltjen K, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ko JY, Kim KI, Im GI, et al. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials. 2014;35(11):3571–81.

    Google Scholar 

  42. Uto S, Nishizawa S, Hoshi K, et al. Bone and cartilage repair by transplantation of induced pluripotent stem cells in murine joint defect model. Biomed Res. 2013;34(6):281–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao T, Zhang ZN, Xu Y, et al. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–5.

    Article  CAS  PubMed  Google Scholar 

  44. Niemeyer P, Krause U, Mehlhorn A, et al. Mesenchymal stem cell-based HLA-independent cell therapy for tissue engineering of bone and cartilage. Curr Stem Cell Res Ther. 2006;1(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  45. Le Blanc K, Tammik C, Ringdén O, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    Article  PubMed  Google Scholar 

  46. Tse WT, Pendleton JD, Guinan EC, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  47. Ghannam S, Bouffi C, Noël D, et al. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther. 2010;1(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Le Blanc K, Frassoni F, Ringdén O, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):1579–86.

    Article  PubMed  Google Scholar 

  49. Park YB, Ha CW, Lee CH, Yoon YC, Park YG. Cartilage Regeneration in Osteoarthritic Patients by a Composite of Allogeneic Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronate Hydrogel: Results from a Clinical Trial for Safety and Proof-of-Concept with 7 Years of Extended Follow-Up. Stem Cells Transl Med. 2017;6(2):613–21.

    Google Scholar 

  50. de Windt TS, Vonk LA, Slaper-Cortenbach IC, van den Broek MP, Nizak R, van Rijen MH, de Weger RA, Dhert WJ, Saris DB. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells. 2017;35(1):256–64.

    Article  PubMed  Google Scholar 

  51. Griffith TS, Brunner T, Ferguson TA, et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995;270(5239):1189–92.

    Article  CAS  PubMed  Google Scholar 

  52. Nagata S, Golstein P. The Fas death factor. Science. 1995;267(5203):1449–56.

    Article  CAS  PubMed  Google Scholar 

  53. Fujihara Y, Takato T, Hoshi K. Macrophage-inducing FasL on chondrocytes forms immune privilege in cartilage tissue engineering, enhancing in vivo regeneration. Stem Cells. 2014;32(5):1208–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste Scotti M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Scotti, C., Koizumi, K., Nakamura, N. (2017). Stem Cells in Joint Repair. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics