Skip to main content

Cell Culture Approaches for Articular Cartilage: Repair and Regeneration

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

There are several published methods for culturing human cells including chondrocytes, osteocytes, and tenocytes to study musculoskeletal development, disorders, and for tissue engineering [1–8]. In this chapter we will focus on cell culture approaches used for articular cartilage repair. Articular cartilage defects are found in nearly 60% of knee arthroscopies [9, 10]. Many times these defects are painful and may result in loss of function. Articular cartilage lacks a blood supply and innervation and therefore has a limited capacity to heal itself. Untreated chondral defects may lead to a cycle of cartilage degradation and eventual osteoarthritis. The goals of cartilage repair are to restore smooth articular cartilage surface, relieve patient symptoms, and improve function. Nonsurgical options available for treating cartilage defects include debridement and lavage. First-line surgical treatment options include bone marrow stimulation techniques such as microfracture, abrasion arthroplasty, and subchondral drilling. Other treatment options include osteochondral autografts and allografts or autologous chondrocyte implantation (ACI). ACI uses autologous cell culture-expanded chondrocytes for the repair of cartilage defects. ACI is the only cell therapy approved for cartilage repair in the USA. The technique was first described by Peterson, Lindahl, and Brittberg in 1987 [11]. It is a two-step procedure involving the harvest of cartilage from a non-weight-bearing location, in vitro expansion of chondrocytes, and reimplantation into the cartilage defect covered by a periosteal graft or off the shelf membrane. Mesenchymal stem cells (MSCs) are multipotent cells with enhanced proliferative capabilities that provide an attractive alternative source of cells for cartilage repair and other orthopedic applications. Cultured MSCs have been successfully used to treat cartilage defects. As an emerging technology, MSCs do not have as extensive a body of evidence as ACI, but clinical reports showing positive outcomes and ongoing clinical trials are advancing the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tubo R, Binette F. Culture and identification of autologous human articular chondrocytes for implantation. Methods Mol Med. 1999;18:205–15.

    CAS  PubMed  Google Scholar 

  2. Nakano N, et al. Age-dependent healing potential of anterior cruciate ligament remnant-derived cells. Am J Sports Med. 2015;43(3):700–8.

    Article  PubMed  Google Scholar 

  3. Andia I, Maffulli N. Biological therapies in regenerative sports medicine. Sports Med. 2016.

    Google Scholar 

  4. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56(3):283–94.

    Article  CAS  PubMed  Google Scholar 

  5. Shah KM, et al. Osteocyte isolation and culture methods. Bonekey Rep. 2016;5:838.

    Article  CAS  PubMed  Google Scholar 

  6. Cody JJ, et al. A simplified method for the generation of human osteoclasts in vitro. Int J Biochem Mol Biol. 2011;2(2):183–9.

    Google Scholar 

  7. Gupta A, et al. Surgical retrieval, isolation and in vitro expansion of human anterior cruciate ligament-derived cells for tissue engineering applications. J Vis Exp. 2014;(86):51597.

    Google Scholar 

  8. Mifune Y, et al. Therapeutic potential of anterior cruciate ligament-derived stem cells for anterior cruciate ligament reconstruction. Cell Transplant. 2012;21(8):1651–65.

    Article  PubMed  Google Scholar 

  9. Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee. 2007;14(3):177–82.

    Article  CAS  PubMed  Google Scholar 

  10. Hjelle K, et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18(7):730–4.

    Article  PubMed  Google Scholar 

  11. Brittberg M, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  12. FDA. Eligibility determination for donors of human cells, tissues, and cellular and tissue-based products; final rule. 2004 [cited 69 101]; 29785–834. http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/ActsRulesRegulations/TissueProposedFinalRules/default.htm

  13. Sekiya EJ, et al. Establishing a stem cell culture laboratory for clinical trials. Rev Bras Hematol Hemoter. 2012;34(3):236–41.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sensebe L, Gadelorge M, Fleury-Cappellesso S. Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther. 2013;4(3):66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou S, Cui Z, Urban JP. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum. 2004;50(12):3915–24.

    Article  PubMed  Google Scholar 

  17. Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol. 2015;3(4):177.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  19. Cheung HS, et al. New collagen markers of ‘derepression’ synthesized by rabbit articular chondrocytes in culture. Biochem Biophys Res Commun. 1976;68(4):1371–8.

    Article  CAS  PubMed  Google Scholar 

  20. Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials. 2016;98:1–22.

    Article  CAS  PubMed  Google Scholar 

  21. Dell’Accio F, De Bari C, Luyten FP. Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum. 2001;44(7):1608–19.

    Google Scholar 

  22. Lin Z, et al. Gene expression profiles of human chondrocytes during passaged monolayer cultivation. J Orthop Res. 2008;26(9):1230–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bruckner P, et al. Induction and prevention of chondrocyte hypertrophy in culture. J Cell Biol. 1989;109(5):2537–45.

    Article  CAS  PubMed  Google Scholar 

  24. Bonaventure J, et al. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res. 1994;212(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  25. Haudenschild DR, et al. Differential expression of multiple genes during articular chondrocyte redifferentiation. Anat Rec. 2001;263(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  26. Binette F, et al. Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro. J Orthop Res. 1998;16(2):207–16.

    Google Scholar 

  27. Yaeger PC, et al. Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res. 1997;237(2):318–25.

    Article  CAS  PubMed  Google Scholar 

  28. Caron MM, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil. 2012;20(10):1170–8.

    Article  CAS  PubMed  Google Scholar 

  29. Benya PD, Padilla SR, Nimni ME. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978;15(4):1313–21.

    Article  CAS  PubMed  Google Scholar 

  30. Benya PD, Brown PD, Padilla SR. Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. J Cell Biol. 1988;106(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  31. Tew SR, et al. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthr Cartil. 2005;13(1): 80–9.

    Article  PubMed  Google Scholar 

  32. Barbero A, et al. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum. 2003;48(5):1315–25.

    Article  CAS  PubMed  Google Scholar 

  33. Thirion S, Berenbaum F. Culture and phenotyping of chondrocytes in primary culture. In: Sabatini M, Pastoureau P, De Ceuninck F, editors. Cartilage and osteoarthritis: volume 1: cellular and molecular tools. Totowa: Humana Press; 2004. p. 1–14.

    Google Scholar 

  34. Gharravi AM, Orazizadeh M, Hashemitabar M. Direct expansion of chondrocytes in a dynamic three-dimensional culture system: overcoming dedifferentiation effects in monolayer culture. Artif Organs. 2014;38(12):1053–8.

    Article  CAS  PubMed  Google Scholar 

  35. Melero-Martin JM, et al. Optimal in-vitro expansion of chondroprogenitor cells in monolayer culture. Biotechnol Bioeng. 2006;93(3):519–33.

    Article  CAS  PubMed  Google Scholar 

  36. Kielpinski G, et al. Roadmap to approval: use of an automated sterility test method as a lot release test for Carticel, autologous cultured chondrocytes. Cytotherapy. 2005;7(6):531–41.

    Article  CAS  PubMed  Google Scholar 

  37. Rapko S, et al. Identification of the chondrocyte lineage using microfibril-associated glycoprotein-2, a novel marker that distinguishes chondrocytes from synovial cells. Tissue Eng Part C Methods. 2010;16(6):1367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marlovits S, et al. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol. 2006;57(1):24–31.

    Article  PubMed  Google Scholar 

  39. Vangsness Jr CT, Sternberg H, Harris L. Umbilical cord tissue offers the greatest number of harvestable mesenchymal stem cells for research and clinical application: a literature review of different harvest sites. Arthroscopy. 2015;31(9):1836–43.

    Article  PubMed  Google Scholar 

  40. Hass R, et al. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klingemann H, Matzilevich D, Marchand J. Mesenchymal stem cells—sources and clinical applications. Transfus Med Hemother. 2008;35(4):272–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  44. Jones BJ, McTaggart SJ. Immunosuppression by mesenchymal stromal cells: from culture to clinic. Exp Hematol. 2008;36(6):733–41.

    Article  CAS  PubMed  Google Scholar 

  45. Le Blanc K, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57(1):11–20.

    Article  PubMed  Google Scholar 

  46. Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther. 2008;8(5):569–81.

    Article  CAS  PubMed  Google Scholar 

  47. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sorrell JM, Baber MA, Caplan AI. Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A. 2009;15(7):1751–61.

    Google Scholar 

  49. Krasnodembskaya A, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28(12):2229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Girolamo L, et al. Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury. 2010;41(11):1172–7.

    Google Scholar 

  51. Alvarez-Viejo M, et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc. 2013;45(1):434–9.

    Article  CAS  PubMed  Google Scholar 

  52. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  53. Wagner W, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008;3(5):e2213.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bonab MM, et al. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7:14.

    Google Scholar 

  55. Izadpanah R, et al. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 2008;68(11):4229–38.

    Google Scholar 

  56. Madeira A, et al. Human mesenchymal stem cell expression program upon extended ex-vivo cultivation, as revealed by 2-DE-based quantitative proteomics. PLoS One. 2012;7(8):e43523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Halfon S, et al. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev. 2011;20(1):53–66.

    Article  CAS  PubMed  Google Scholar 

  58. Bianchi G, et al. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res. 2003;287(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  59. Johnstone B, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238(1):265–72.

    Article  CAS  PubMed  Google Scholar 

  60. Mackay AM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998;4(4):415–28.

    Article  CAS  PubMed  Google Scholar 

  61. Auletta JJ, et al. Fibroblast growth factor-2 enhances expansion of human bone marrow-derived mesenchymal stromal cells without diminishing their immunosuppressive potential. Stem Cells Int. 2011;2011:235176.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Felka T, et al. Animal serum-free expansion and differentiation of human mesenchymal stromal cells. Cytotherapy. 2010;12(2):143–53.

    Article  CAS  PubMed  Google Scholar 

  63. Grigolo B, et al. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials. 2001;22(17):2417–24.

    Article  CAS  PubMed  Google Scholar 

  64. Kavalkovich KW, et al. Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system. In Vitro Cell Dev Biol Anim. 2002;38(8):457–66.

    Article  CAS  PubMed  Google Scholar 

  65. Tuli R, Li WJ, Tuan RS. Current state of cartilage tissue engineering. Arthritis Res Ther. 2003;5(5):235–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karlsson C, et al. Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res. 2007;25(2):152–63.

    Article  CAS  PubMed  Google Scholar 

  67. Williams R, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5(10):e13246.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Giuliani N, et al. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int. 2013;2013:312501.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yang KG, et al. Impact of expansion and redifferentiation conditions on chondrogenic capacity of cultured chondrocytes. Tissue Eng. 2006;12(9):2435–47.

    Article  CAS  PubMed  Google Scholar 

  70. Itoh S, et al. Trps1 plays a pivotal role downstream of Gdf5 signaling in promoting chondrogenesis and apoptosis of ATDC5 cells. Genes Cells. 2008;13(4):355–63.

    Article  CAS  PubMed  Google Scholar 

  71. Leung VY, et al. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet. 2011;7(11):e1002356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Torreggiani E, et al. Role of slug transcription factor in human mesenchymal stem cells. J Cell Mol Med. 2012;16(4):740–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barry F, et al. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  74. Schmitt B, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation. 2003;71(9–10):567–77.

    Article  CAS  PubMed  Google Scholar 

  75. Sekiya I, Colter DC, Prockop DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun. 2001;284(2):411–8.

    Article  CAS  PubMed  Google Scholar 

  76. Sekiya I, et al. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res. 2005;320(2):269–76.

    Google Scholar 

  77. Potier E, Noailly J, Ito K. Directing bone marrow-derived stromal cell function with mechanics. J Biomech. 2010;43(5):807–17.

    Article  CAS  PubMed  Google Scholar 

  78. Araldi E, Schipani E. Hypoxia, HIFs and bone development. Bone. 2010;47(2):190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Khan WS, et al. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res. 2010;28(6):834–40.

    Google Scholar 

  80. Murdoch AD, et al. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells. 2007;25(11):2786–96.

    Article  CAS  PubMed  Google Scholar 

  81. Shirasawa S, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84–97.

    Article  CAS  PubMed  Google Scholar 

  82. Dickhut A, et al. Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol. 2009;219(1):219–26.

    Article  CAS  PubMed  Google Scholar 

  83. Wakitani S, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil. 2002;10(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  84. Wakitani S, et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant. 2004;13(5):595–600.

    Article  PubMed  Google Scholar 

  85. Wakitani S, et al. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med. 2007;1(1):74–9.

    Article  PubMed  Google Scholar 

  86. Nejadnik H, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.

    Article  PubMed  Google Scholar 

  87. Akgun I, et al. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg. 2015;135(2):251–63.

    Article  PubMed  Google Scholar 

  88. Sekiya I, et al. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res. 2015;473(7):2316–26.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bekkers JE, et al. One-stage focal cartilage defect treatment with bone marrow mononuclear cells and chondrocytes leads to better macroscopic cartilage regeneration compared to microfracture in goats. Osteoarthr Cartil. 2013;21(7):950–6.

    Article  CAS  PubMed  Google Scholar 

  90. Bekkers JE, et al. Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells: comparison with microfracture. Am J Sports Med. 2013;41(9):2158–66.

    Article  PubMed  Google Scholar 

  91. Vonk LA, et al. Preservation of the chondrocyte’s pericellular matrix improves cell-induced cartilage formation. J Cell Biochem. 2010;110(1):260–71.

    CAS  PubMed  Google Scholar 

  92. Bomer N, et al. Neo-cartilage engineered from primary chondrocytes is epigenetically similar to autologous cartilage, in contrast to using mesenchymal stem cells. Osteoarthr Cartil. 2016;24(8):1423–30.

    Article  CAS  PubMed  Google Scholar 

  93. Garcia J, et al. Chondrogenic potency analyses of donor-matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat. Stem Cells Int. 2016;2016:6969726.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li S, et al. Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study. J Biomater Appl. 2015;29(6):824–36.

    Article  CAS  PubMed  Google Scholar 

  95. Gurusinghe S, Strappe P. Gene modification of mesenchymal stem cells and articular chondrocytes to enhance chondrogenesis. Biomed Res Int. 2014;2014:369528.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ding Q, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. 2013;12(2):238–51.

    Article  CAS  PubMed  Google Scholar 

  97. Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mali P, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  Google Scholar 

  101. Tsumaki N, Okada M, Yamashita A. iPS cell technologies and cartilage regeneration. Bone. 2015;70:48–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyitayo S. Fakunle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Fakunle, E.S., Lane, J.G. (2017). Cell Culture Approaches for Articular Cartilage: Repair and Regeneration. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics