Skip to main content

Soil Moisture Estimation

  • Chapter
  • First Online:
Remote Sensing of Soils
  • 2289 Accesses

Abstract

Timely and reliable information on soil-moisture over large areas is useful in meteorology, hydrology, and agriculture. In meteorology, atmospheric models require information about energy flux at the earth’s surface. The two types of energy exchanged at the surface are sensible heat and latent heat. Sensible heat absorbed and released by the soil is for the most part a small component of the surface energy. When latent heat is considered, some measurement of soil wetness is needed in order to relate actual evapotranspiration to potential evaporation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Mozos, J.; Gonzalez-Audícana, M.; Casalí, J. Evaluation of empirical and semiempirical backscattering models for surface soil moisture estimation. Can. J. Remote Sens. 2007, 33, 176–188.

    Google Scholar 

  • Arya, L.M., J.C. Richter, and J.F. Paris, “Estimating profile water storage from surface zone soil moisture measurements under bare field conditions,” Water Res. Research, Vol. 19, no. 2, pp. 403–412, 1983.

    Google Scholar 

  • Attema, E.P.W. and Ulaby, F.T., 1978. Vegetation modeled as a water cloud. Radio Sci. 13(2): 357–364.

    Google Scholar 

  • Baghdadi N., King C., Chanzy A., and Wingneron J.P., 2002. An empirical calibration of IEM model. Based on SAR data and measurements of soil moisture and surface roughness over bare soils. International Journal of Remote Sensing, vol. 23, no. 20, pp. 4325–4340.

    Google Scholar 

  • Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J. Remote Sens. 2006, 27, 3831–3852.

    Google Scholar 

  • Baghdadi,N.,MehrezZribi, Cécile Loumagne, Patrick Ansart and Thais Paris Anguela, 2008. Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. emote Sensing of Environment 112 (2008) 4370–4379.

    Google Scholar 

  • Barrett, B.W., Dwyer, E., and Whelan, P., 2009. Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote Sensing 2009, 1, 210–242.

    Google Scholar 

  • Basharinov, A. E., and Shutko, A. (1975), Simulation studies of the SHF radiation of soils under moist conditions, NASA Tech. Translation TI” F-16.

    Google Scholar 

  • Bell, J. P. and J. S. G. McCulloch. 1966. Soil Moisture Estimation by the Neutron Scattering Method in Britain. J. Hydrol., Vol. 4, pp. 254–263.

    Google Scholar 

  • Bindlish, R.; Barros, A.P. Subpixel variability of remotely sensed soil moisture: an intercomparison study of SAR and ESTAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 326–337.

    Google Scholar 

  • Blanchard B. J., McFmland M. J., Schmugge T. J., and Rhoades E. “Estimation of soil moisture with API algorithms and microwave emission,” Water Resources Bull. Am. Water Resources Assn. 17, (5), 767–774 (October 1981).

    Google Scholar 

  • Bolten J. D., Lakshmi V., and Njoku E. G., “Soil moisture retrieval using the passive/active L- and S-Band radar/radiometer,” IEEE Trans. Geosci. Remote Sens. J. 41, (12), 2792–2801 (2003).

    Google Scholar 

  • Borgeaud, M.; Wegmueller, U. On the use of ERS SAR interferometry for the retrieval of geo and bio-physical information. In Proceedings of the ‘Fringe 96’ Workshop on ERS SAR Interferometry, ESA SP-406, Zurich, Switzerland, 1996; pp. 83–94.

    Google Scholar 

  • Bottcher, C. F. (1952) Electric Polarization. Elsevier, New York.

    Google Scholar 

  • Bovolo, F.; Bruzzone, L. 2005. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 43, 2963–2972.

    Google Scholar 

  • Brian W. Barrett 1, Edward Dwyer and Pádraig Whelan, 2009. Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote Sensing 2009, 1:210–242.

    Google Scholar 

  • Brown, R.J.; Pokier, S.; Manore, M.J. Correlations between X, C and L-band imagery within an agricultural environment. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘88), Edinburgh, Scotland, UK, 1988; pp. 1279–1280.

    Google Scholar 

  • Byrne, G.F.; Crapper, P.F.; Mayo, K.K. Monitoring land-cover change by principal component analysis of multitemporallandsat imagery. Remote Sens. Environ. 1980, 10, 175–184. 143.

    Google Scholar 

  • Carlson T., 2007.“An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery,” Sens. J. 7, 1612–1629.

    Google Scholar 

  • Carlson, T.N.; Dodd, J.K.; Benjamin, S.G.; Cooper, J.N. 1981. Remote Estimation of Surface Energy Balance, Moisture Availability and Thermal Inertia. J. Appl. Meteor. 20, 67–87.

    Google Scholar 

  • Carlson, T.N.; Gillies, R.R.; and Perry, E.M. 1994, A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 1994,-9 pp 161–173.

    Google Scholar 

  • Caroll, T.R., 1981. Airborne soil moisture measurements using natural terrestrial gamma radiation. Soil Science 132(5):358–366.

    Google Scholar 

  • Carslaw, H.S., and J.C. Jaeger. 1959. Conduction of heat in solids. 2nd ed. Oxford Univ. Press, Oxford, UK.

    Google Scholar 

  • Champion, I. Simple modelling of radar backscattering coefficient over a bare soil: variation with incidence angle, frequency and polarization. Int. J. Remote Sens. 1996, 15, 783–800.

    Google Scholar 

  • Charlton, M.B. (2001) Characterization of ground-penetrating radar (GPR) response in a variety of Earth materials under different moisture conditions, Proceedings of Subsurface and Sensing Technologies and Applications III, 30 July – 1 August 2001, San Diego, CA, SPIE Vol. 4491, 288–299.

    Google Scholar 

  • Chauhan N. S., “Soil moisture estimation under a vegetation cover: Combined active passive microwave remote sensing method,” Int. J Remote Sens. 18, (5), 1079–1097 (1997).

    Google Scholar 

  • Chen, K.S.; Yen, S.K.; Huang, W.P.A simple model for retrieving bare soil moisture from radarscattering coefficients. Remote Sens. Environ. 1995, 54, 121–126.

    Google Scholar 

  • Chew, C., E. Small, K. Larson, and V. Zavorotny. 2013. Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for volumetric soil moisture. IEEE Trans. Geosci. Remote Sens. (in press). doi:10.1109/TGRS.2013.2242332.

  • Choudhury, B.J., T.J. Schmugge, A.T.C. Chang, and R.W. Newton, 1979. Effect of Surface Roughness on the Microwave Emission of Soils. Journal of Geophysical Research, 84, pp. 5699–5705.

    Google Scholar 

  • Cloude, S.R. The Dual Polarisation entropy/alpha decomposition: A PALSAR case study. In POLinSAR’07: the 3rd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, January 22–26, 2007.

    Google Scholar 

  • Cloude, S.R.; Corr, D.G. A new parameter for soil moisture estimation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘02), Toronto, Ontario, Canada, 2002; Vol. 1, 641–643.

    Google Scholar 

  • Cloude, S.R.; Papathanassiou, K.; Hajnsek, I. An eigenvector method for the extraction of surface parameters in polarimetric SAR. In Proceedings of the CEOS SAR Workshop, European Space Agency: Toulouse, France, 2000; pp. 693–698.

    Google Scholar 

  • Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78.

    Google Scholar 

  • Cloude, S.R.; Pottier, E.A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518;

    Google Scholar 

  • Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics II. Direct current characteristics. J. Chem. Phys. 1942, 10, 98–105.116.

    Google Scholar 

  • Dabrowska-Zielinska, K.; Gruszczynska, M.; Kowalik, W.; Inoue, Y.; Hoscilo, A. Retrieval of crop parameters and soil moisture from ENVISAT ASAR based on model analysis. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘05), Seoul, Korea, July 25–29, 2005; pp. 2149–2152.

    Google Scholar 

  • Das, K. and Paul, P.K., 2015. Present status of soil moisture estimation by microwave remote sensing Cogent Geosciences (2015) 1:1084669.

    Google Scholar 

  • Davis, J.L. and Annan, A.P., 1989. Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical prospecting 37: 531–551.

    Google Scholar 

  • Debye, P. 1929, Polar Moleculars, Dovver Publishers, New York.

    Google Scholar 

  • Della Vecchia, A.; Ferrazzoli, P.; Guerriero, L.; Blaes, X.; Defourny, P.; Dente, L.; Mattia, F.; Satalino, G.; Strozzi, T.; Wegmuller, U. Influence of geometrical factors on crop backscattering at C-band. IEEE Trans. Geosci. Remote Sens. 2006, 44, 778–790.

    Google Scholar 

  • Desilets, D., and M. Zreda. 2001. On scaling cosmogenic nuclide production rates for altitude and latitude using cosmic-ray measurements. Earth Planet. Sci. Lett. 193:213–225. doi:10.1016/S0012-821X(01)00477-0).

  • Desilets, D., M. Zreda, and T. Ferré. 2010. Nature’s neutron probe: Land-surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 46: W11505. doi:10.1029/2009WR008726.

  • Dirksen, C., 1999: Soil Physics Measurements. Catena Verlag, Reiskirchen, Germany, 154 pp.

    Google Scholar 

  • Dobson, M.C., F.T. Ulaby, M.T. Hallikainen, and M.A. El-Rayes, 1985. Microwave dielectric behavior of wet soil, II, Dielectric mixing models. IEEE Trans. Geoscience and Remote Sensing, GE-23, pp. 35–46.

    Google Scholar 

  • Du, S. and Rummel, P. (1994) Reconnaissance studies of moisture in the subsurface with GPR. In: Proceedings of the Fifth International Conference on Ground Penetrating Radar, Kitchener, Ontario, 12–16 June 1994, 1241-1248.

    Google Scholar 

  • Du, Y.; Ulaby, F.T.; Dobson, M.C. Sensitivity to soil moisture by active and passive microwave sensors. IEEE Trans. Geosci. Remote Sens. 2000, 38, 105–114.

    Google Scholar 

  • Dubois, P.C.; van Zyl, J.; Engman, T. (1995) Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926.

    Google Scholar 

  • D’Urso, G.; Minacapilli, M.A semi-empirical approach for surface soil water content estimation from radar data without a-priori information on surface roughness. J. Hydrol. 2006, 321, 297–310.

    Google Scholar 

  • Engman, E.T., and N. Chauhan. 1995. Status of microwave soil moisture measurements with remote sensing. Remote Sens. Environ. 51:189–198.

    Google Scholar 

  • Engman, E.T., 2000. Soil Moisture. In Schultz, G.A and Engman, E.T. (ed.) Remote Sensing in Hydrology and Water Management. Springer.

    Google Scholar 

  • Engman, E.T., 1991. Applictions of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sensing of Environment, 35(2–3), 213–226.

    Google Scholar 

  • Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, H., Crow, W.T., Edelstein, W.T., Etin, J.K., Goodman, S.D., Jacson, T.J., and Johnson, J., 2010. The soil moisture active passive (SMAP) Mission Proceedings of the IEEE, 98(5)704–716.

    Google Scholar 

  • Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities. International Geoscience and Remote Sensing Symposium on Remote Sensing- Farm Research through operational use. Edited by T.D. Guyenne and J.J. Hunt (Paris, ESA), S.P.215, vol.1, pp 97–102, 1984.

    Google Scholar 

  • Franz, T.E., M. Zreda, R. Rosolem, and T.P.A. Ferré. 2013. A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrol. Earth Syst. Sci. 17:453–460. doi:10.5194/hess-17-453-2013.

  • Freeman, A., and S.L. Durden. 1998. A three component model for polarimetric SAR data. IEE Transactions on Geosciences and Remote Sensing , GE-36:963–973.

    Google Scholar 

  • Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369.

    Google Scholar 

  • Gabriel, A.K.; Goldstein, R.; Zebker, H.A. Mapping small elevation changes over large areas. J. Geophys. Res. 1989, 94, 9183–9191

    Google Scholar 

  • Gardner, C.M.K., D.A. Robinson, K. Blyth and J.D. Cooper, 2001: Soil water content. In: K.A. Smith, and C.E. Mullins, Soil and Environmental Analysis: Physical Methods, Marcel Dekker, New York, pp. 1–64.

    Google Scholar 

  • Graham, L.C. Synthetic Inter ferometer radar for topographic mapping. Proc, IEEE 1974, 62,763–768.

    Google Scholar 

  • Graham A.J. and Harris R., 2003. Extracting biophysical parameters from remotely sensed radar data: a review of the water cloud model. Progress in Physical Geography 27(2): 217–229.

    Google Scholar 

  • Hajnsek, I. Inversion of Surface Parameters from Polarimetric SAR data. PhD Thesis, Friedrich Schiller University of Jena (FSU): Jena, Germany, 2001.

    Google Scholar 

  • Hajnsek, I.; Alvarez-Perez, J.L.; Papathanassiou, K.P.; Moreira, A.; Cloude, S.R. Surface parameter estimation using interferometric coherences at different polarisations. In POLinSAR Workshop on Applications of SAR Polarimetry and Polarimetric Interferometry, ESA-ESRIN, Frascati, Italy, January 14–16, 2003

    Google Scholar 

  • Hajnsek, I.; Jagdhuber, T.; Schon, H.; Papathanassiou, K.P. Potential of estimating soil moisture under vegetation cover by means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454.

    Google Scholar 

  • Hajnsek, I.; Papathanassiou, K.P.; Moreira, A. 2002. Cloude, S.R. Surface parameter estimation usinginterferometric and polarimetric SAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘02) Toronto, ON, Canada, 2002; Vol. 1, pp. 420–422.

    Google Scholar 

  • Hallikainen, M., F. Ulaby, M. Dobson, M. El-Rayes, and L. Wu. 1985. Microwave dielectric behavior of wet soil: I. Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens. GE-23:25–34. doi:10.1109/TGRS.1985.289497.

  • Henebry, G.M. Advantages of principal components analysis for land cover segmentation from SAR image series. In Proceedings of the 1st ERS Symposium ‘Space at the Service of our Environment’, ESA SP: Florence, Italy, 1997; pp. 175–178. 148.

    Google Scholar 

  • Holah, N.; Baghdadi, N.; Zribi, M.; Bruand, A.; King, C. Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields. Remote Sens. Environ. 2005, 96, 78–86.

    Google Scholar 

  • Huisman, J. A. Hubbard S. S., Redman J. D., and Annan A. P. 2003. Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone Journal 2:476–491 (2003).

    Google Scholar 

  • Ichoku, C.; Karnieli, A.; Arkin, Y.; Chorowicz, J.; Fleury, T.; Rudant, J.P. Exploring the utility potential of SAR interferometric coherence images. Int. J. Remote Sens. 1998, 19, 1147–1160.

    Google Scholar 

  • Idso, S.B. and Ehrler, W.L.,1976. Estimating soil moisture in the root zone of crops: a technique adaptable to remote sensing. Geophysics Research Letters, 3, 23–25.

    Google Scholar 

  • Jackson T. J., Le Vine D. M., Hsu A. Y., Oldak A., Starks P. J., Swif C. T., Isham J. D., and Haken M., “Soil moisture mapping at regional scales using microwave radiometry: the southern great plains hydrology experiment,” IEEE Trans. Geosci. Remote Sens. J. 37, (5), 2136–2151 (September) (1999).

    Google Scholar 

  • Jackson T.J. and Schmugge, T.J., 1991. Corrections for the effects of vegetation on the microwaveemission of soils. IEEE Int. Geosc. Remote Sensing Symp. (IGARSS) Digest. pp 753–756.

    Google Scholar 

  • Jackson, R.D., Idso, S.B., Reginato, R.J. and Ehrler, W.L. 1977. Canopy temperature reveals stress. Crops Soils, 29(8):10–13.

    Google Scholar 

  • Jackson, T.J. and O’Neil, P., 1987. Temporal observations of surface soil moisture using a passive microwave sensor. Remote Sensing of Environment. 21:281–296.

    Google Scholar 

  • Jackson, T.J., 1980. Profile soil moisture from surface measurements. J. Irrig. Drainage Div. ASCE, 106:81–92.

    Google Scholar 

  • Jackson, T.J., Schmugge, T.J. and Wang J.R.,1982. Passive microwave sensing of soil moisture under vegetation canopies. Water resources Research. 18 (4):1137–1142.

    Google Scholar 

  • Jackson, R.D., Ahler, J., Estes, J.E., Heilman, J.L. Kakle, A. Kanemasu, E.T. Milard, J., Price, J.C., Weig and, C. 1978. Soil moisture estimation using reflected solar and emitted thermal radiation. In Soil Moisture Workshop, NASA Conference Publication 2073 Chapter-7, 219 pp. 1978.

    Google Scholar 

  • Ji, J.; van der Keur, P.; Thomsen, A.; Skriver, H. Soil moisture retrieval using the Danish L- & C-band polarimetric SAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘96), Lincoln, NB, USA, 1996; Vol. 2, pp. 1300–1302.

    Google Scholar 

  • Kong, X. and Dorling, S.R., 2008. Near‐surface soil moisture retrieval from ASAR Wide Swath imagery using a Principal Component Analysis. International Journal of Remote Sensing 29(10): 2925–2942.

    Google Scholar 

  • Kostov, K.G. and Jackson, T.J., 1993. Estimating profile soil moisture from surface layer measurement-a review. Proc. SPIE-Int. Sot.for Opt. Eng., Orlando, FL, 1941. Sot. Photo-Optical Instrumentation Eng. SPIE, Bellingham, WA, pp. 125–136.

    Google Scholar 

  • Lakshmi, V. 2013. Remote Sensing of Soil Moisture. Open access article Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA.

    Google Scholar 

  • Lambin, E.F., and Ehrlich, D. 1996. The surface temperature -vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing, 17, pp. 463–487.

    Google Scholar 

  • Larson, K.M., E.E. Small, E. Gutmann, A. Bilich, P. Axelrad, and J. Braun. 2008. Using GPS multipath to measure soil moisture fluctuations: Initial results. GPSSolut. 12:173–177. doi:10.1007/s10291-007-0076-6.

  • Larson, K.M., J.J. Braun, E.E. Small, V.U. Zavorotny, E.D. Gutmann, and A.L. Bilich. 2010. GPS multipath and its relation to near-surface soil moisture content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3:91–99. doi:10.1109/JSTARS.2009.2033612.

  • Lee, J.S.; Boerner, W.M.; Schuler, D.L.; Ainsworth, T.L.; Hajnsek, I.; Papathanassiou, K.P.; Lüneburg, E. A review of polarimetric SAR algorithms and their applications. J. Photogramm. Remote Sens. 2004, 9, 31–80.

    Google Scholar 

  • Lee, J.S.; Hoppel, K. Principal components transformation of multifrequencypolarimetric SAR imagery. IEEE Trans. Geosci. Remote Sens. 1992, 30, 686–696.

    Google Scholar 

  • Lisichkin, V.; Shvedov, S. 2008. Comparative analysis of models of the dielectric properties of soil in self-excited oscillator measurements of moisture content. Meas. Techniq. 51, 213–218.

    Google Scholar 

  • Lu, Z.; Meyer,. Lu, Z.; Meyer, D.J. Study of high SAR backscattering caused by an increase of soil moisture over a sparsely vegetated area: implications for characteristics of backscattering. Int. J. Remote Sens. 2002, 23, 1063–1074.

    Google Scholar 

  • Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F.; Gai, M. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 2001, 39, 873–884.

    Google Scholar 

  • Maity, S.; Patnaik, C.; Chakraborty, M.; Panigrahy, S. Analysis of temporal backscattering of cotton crops using a semi-empirical model. IEEE Trans. Geosci. Remote Sens. 2004, 42, 577–587.

    Google Scholar 

  • Mattia, F.; Le Toan, T.; Souyris, J.C.; De Carolis, C.; Floury, N.; Posa, F.; Pasquariello, N. G. The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 954–966.

    Google Scholar 

  • Meesters, A. G. C. A., R. A. M. de Jeu, and M. Owe (2005), Analytical derivation of the vegetation optical depth from the microwave polarization difference index, IEEE Trans. Geosci., Remote Sens., 2, 121–123.

    Google Scholar 

  • Millard, J.P., Jackson, R.D. Goettelman, R.D., Reginato, R.J. and Idso, S.B., 1978. Crop water stress assessment using airborne thermal scanner. Photogrammetric Engineering and Remote Sensing. 44:77–85.

    Google Scholar 

  • Moran, M.S.; Hymer, D.C.; Qi, J.; Sano, E.E. Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland. Agr. Forest Meteorol. 2000, 105, 69–80.

    Google Scholar 

  • Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at thewatershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826.

    Google Scholar 

  • Narayan, U.; Lakshmi, V.; Jackson, T.J. High-resolution change estimation of soil moisture using L-band radiometer and Radar observations made during the SMEX02 experiments. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1545–1554

    Google Scholar 

  • Nesti, G.; Tarchi, D.; Rudant, J.P. Decorrelation of backscattered signal due to soil moisture changes. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘95), Toulouse, France, October 1995; pp. 2026–2028.

    Google Scholar 

  • Neusch, T.; Sties, M. Application of the Dubois-model using experimental synthetic apertureradar data for the determination of soil moisture and surface roughness. ISPRS J. Photogramm. Remote Sens. 1999, 54, 273–278.

    Google Scholar 

  • Newton, R.W., Black, Q.R., Makanvand, S., Blanchard, A.J. and Jean, B.R. 1982. Soil moisture information and thermal microwave emission. IEEE Trans. Geosci Remote Sens. GE-21, 300–307.

    Google Scholar 

  • Njoku, E.G. and Kong, J.A. 1977. Theory for passive remote sensing of near surface soil moisture. J. Geophysical Research. 82(20):3108–3118.

    Google Scholar 

  • Njoku, E.G.; Wilson, W.J.; Yueh, S.H.; Dinardo, S.J.; Li, F.K.; Jackson, T.J.; Lakshmi, V.; Bolten, J. Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2659–2673.

    Google Scholar 

  • Nord, M.E.; Ainsworth, T.L.; Jong-Sen, L.; Stacy, N.J.S. Comparison of compact polarimetric synthetic aperture radar modes. IEEE Trans. Geosci. Remote Sens. 2009, 47, 174–188.

    Google Scholar 

  • Notarnicola, C.; Angiulli, M.; Posa, F. Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas. IEEE Trans. Geosci. Remote Sens. 2006, 44, 925–935.

    Google Scholar 

  • Oh, Y. and Y. Kay, 1998. Condition for precise measurements of soil surface roughness, IEEE Transactions on Geoscience and Remote Sensing 36(2): 691–695.

    Google Scholar 

  • Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381.

    Google Scholar 

  • Oh, Y.; Sarabandi, K.; Ulaby, F.T. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1348–1355.

    Google Scholar 

  • O’Neill, P.; Chauhan, N.; Jackson, T. Use of active and passive microwave remote sensing forsoil moisture estimation through corn. Int. J. Remote Sens. 1996, 17, 1851–1865.

    Google Scholar 

  • Oschner, T.E., Kosh, M.H., Cuenca, R.H., Dorigo, W.A., Draper, C.S., Hagimoto, Y., Kerr, Y.H., Larson, K.M., Njoku, E.G., Small, E.E. and Zreda, M. 2013. Stae of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. doi:10.2136/sssaj2013.03.0093.

  • Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3-1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807.

    Google Scholar 

  • Piwowar, Joseph M. and Ellsworth F. LeDrew, 1996. Principal Components Analysis of Arctic Ice Conditions Between 1978 and 1987 as Observed from the SMMR Data Record. Can. J. Remote Sensing, 22(4): 390–403.

    Google Scholar 

  • Price, J. C. 1982. Estimation of regional scale evapotranspiration through analysis of satellite thermal-infrared data. IEEE Trans Geosci. Remote Sensing GE-20(3): 286–292.

    Google Scholar 

  • Ragab, R., 1992. Assessment of the relationship between remotely sensed topsoil moisture content and profile moisture content. In: F.J. Eley (Editor), Soil Moisture Modelling and Monitoring for Regional Planning. Environment Canada, Saskatoon, Sask., pp. 141–154.

    Google Scholar 

  • Ragab, R. 1995 Towards a continuous operational system to estimate the root-zone soil moisture from intermittent remotely sensed surface moisture Journal of Hydrology 173 (1995) l–25.

    Google Scholar 

  • Rahman, M.M.; Moran, M.S.; Thoma, D.P.; Bryant, R.; Holifield Collins, C.D.; Jackson, T.; Orr, M. Tischler, 2008. Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sensing of Environment 112 (2008) 391–402.

    Google Scholar 

  • Rao, K.S.; Raju, S.; Wang, J.R.; Center, N.; Greenbelt, M.D. Estimation of soil moisture and surface roughness parameters from backscattering coefficient. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1094–1099.

    Google Scholar 

  • Reynolds, J.M. (1997) An Introduction to Applied and Environmental Geophysics. Chichester: Wiley.

    Google Scholar 

  • Rignot, E.J.M.; van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906.

    Google Scholar 

  • Rodriguez-Alvarez, N., X. Bosch-Lluis, A. Camps, A. Aguasca, M. Vall-llossera, E. Valencia, et al. 2011. Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the interference pattern GNSS-R technique. Radio Sci. 46:RS0C03. doi:10.1029/2011RS004680.

  • Rodriguez-Alvarez, N., X. Bosch-Lluis, A. Camps, M. Vall-Ilossera, E. Valencia, J.F. Marchan-Hernandez, and I. Ramos-Perez. 2009. Soil moisture retrieval using GNSS-R techniques: Experimental results over a bare soil field. IEEE Trans. Geosci. Remote Sens. 47:3616–3624. doi:10.1109/TGRS.2009.2030672.

  • Sanden E. M., Britton C. M., and Everitt J. H., “Total ground-cover estimates from corrected scene brightness measurements,” Photogram. Eng. Remote Sen. 62, (2), 147–150 (February 1996).

    Google Scholar 

  • Schmugge, T. J. 1978. Remote Sensing of Surface Soil Moisture. Jour. of Applied Meteorology, 17, 1549p.

    Google Scholar 

  • Schmugge, T. J. 1990. Measurement of surface soil moisture and temperature. In Remote Sensing of Biosphere Functioning (R.J. Hobbs and H.A. Mooney Eds.) Springer-Verlag, New York. pp 31–62.

    Google Scholar 

  • Schmugge, T. J. Jackson, T.J and McKim, H. L. 1979. Survey of methods of soil moisture determination. NASA Technical Memorandum 80658 76p.

    Google Scholar 

  • Schmugge, T.J.; Kustas, W.P.; Ritchie, J.C.; Jackson, T.J.; Rango, A. Remote sensing in hydrology. Adv. Water Resour. 2002, 25, 1367–1385.

    Google Scholar 

  • Scipal, K.; Wagner, W.; Trommler, M.; Naumann, K. The Global Soil Moisture Archive 1992–2000 from ERS scatterometer data: first results. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘02), Toronto, Ontario, Canada, 2002; p. 28.

    Google Scholar 

  • Selker, J.S., L. Thevenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, et al. 2006. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour. Res. 42:W12202. doi:10.1029/2006WR005326.

  • Shi J., Jiang L., Zhang L., Chen K. S., Wigneron J., Chanzy A., and Jackson T. J., 2006. Physically based estimation of bare-surface soil moisture with the passive radiometers,” IEEE Trans. Geosci. Remote Sens. J. 44, (11) 3145–3153 (November 2006)

    Google Scholar 

  • Shi, J.; Wang, J.; Hsu, A.Y.; O’Neill, P.E.; Engman, E.T. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1254–1266.

    Google Scholar 

  • Shoshany, M.; Svoray, T.; Curran, P.J.; Foody, G.M.; Perevolotsky, A. The relationship between ERS-2 SAR backscatter and soil moisture: generalization from a humid to semi-arid transect. Int. J. Remote Sens. 2000, 21, 2337.

    Google Scholar 

  • Shukla, M.K., 2014 Soil Physics: An Introduction. CRC Press, Taylor and Francis Group, 458p.

    Google Scholar 

  • Sikdar, M.; Cumming, I.A modified empirical model for soil moisture estimation invegetated areas using SAR data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘04), Anchorage, AK, USA, 2004; pp. 803–806.

    Google Scholar 

  • Simmonds, L.P. ad and Burke, E.J., 1998. Estimating near surface soil moisture from passive microwave remote sensing –an application of MICCRO-SWEAT[Estimation par trledetectiomducontenu en eau du sol pres de sa surface a l’aide d’un detecteaurpassif de microondes-une application de Soil moisture map from SMAP mission

    Google Scholar 

  • Simpson, J.A. 2000. The cosmic ray nucleonic component: The invention and scientific uses of the neutron monitor. Space Sci. Rev. 93:11–32. doi:10.1023/A:1026567706183.

  • Slob, E. C., Sato, M., and Olhoeft, G., 2010. Surface and borehole ground- penetrating radar development. Geophysics, 75(5) A103–A120.

    Google Scholar 

  • Souyris, J.C.; Imbo, P.; Fjortoft, R.; Mingot, S.; Lee, J.S. Compact polarimetry based on symmetry properties of geophysical media: The p/4 mode. IEEE Trans. Geosci. Remote Sens. 2005, 43, 634–646.

    Google Scholar 

  • Srivastava, H.S.; Patel, P.; Manchanda, M.L.; Adiga, S. Use of multiincidence angle Radarsat-1 SAR data to incorporate the effect of surface roughness in soil moisture estimation. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1638–1640.

    Google Scholar 

  • Stolz, R.; Schneider, K.; Schouten, L.; van Leeuwen, H.; Bach, H. Combining the microwave model CLOUD and the growth model PROMET-V for soil moisture retrieval. In Proceedings of ERS-ENVISAT-Symposium, Gothenburg, Sweden, October 16–20, 2000.

    Google Scholar 

  • Striegl, A. M., and S. P. Loheide II (2012): Heated distributed temperature sensing for field scale soil moisture monitoring, Ground Water, 50(3), 340–347.

    Google Scholar 

  • Taconet, O.; Vidal-Madjar, D.; Emblanch, C.; Normand, M. Taking into account vegetation effects to estimate soil moisture from C-band radar measurements. Remote Sens. Environ. 1996, 56, 52–56.

    Google Scholar 

  • Thoma, D.; Moran, M.; Bryant, R.; Collins, C.H.; Rahman, M.; Skirvin, S. Comparison of two methods for extracting surface soil moisture from C-band radar imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ‘04), Anchorage, AK, USA, 2004; pp. 827–830.

    Google Scholar 

  • Thoma, D.P.; Moran, M.S.; Bryant, R.; Rahman, M.; Holifield-Collins, C.D.; Skirvin, S.; Sano, E.E.; Slocum, K. Comparison of four models to determine surface soil moisture from C-band radar imagery in a sparsely vegetated semiarid landscape. Water Resour. Res. 2006, 42, 1–12.

    Google Scholar 

  • Topp, G.C., J.L. Davis and A.P. Annan, 1980: Electromagnetic determination of soil water content: Measurement in coaxial transmission lines. Water Resources Research, 16, pp. 574–582.

    Google Scholar 

  • Ulaby, F. T. and P. P. Batlivala. 1976. Optimum Radar Parameters for Mapping Soil Moisture, IEEE Trans. on Geosci. Elect., v. GS-14, n. 2, pp. 81–93.

    Google Scholar 

  • Ulaby, F.T. and Elachi, C., 1990. Radar polarimetry for geoscience applications, Artech House Inc. pp. 323.

    Google Scholar 

  • Ulaby, F. T. J. Cihlar and R. K. Moore. 1974. Active Microwave Measurements of Soil Water Content, Remote Sensing of Environment, v. 3, pp. 185–203.

    Google Scholar 

  • Ulaby, F.T.; Allen, C.T.; Eger, G.; Kanemasu, E. 1984. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 1984, 14, 113–133.109.

    Google Scholar 

  • Ulaby, F.T.; Dobson, M.C.; Bradley, G.A. Radar reflectivity of bare and vegetation-covered soil. Adv. Space Res. 1981, 1, 91–104.

    Google Scholar 

  • Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume-III Scattering and Emission Theory, Advanced Systems and Applications. Dedham, MA, USA, 1986.

    Google Scholar 

  • Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume Scattering and Emission Theory, Advanced Systems and Applications. Dedham, MA, USA, 1986

    Google Scholar 

  • van Dam, R.L.; Borchers, B.; Hendrickx, J.M. Methods for prediction of soil dielectric properties- A review. In Proceedings of the SPIE, Orlando, FL, USA, March 28- April 1, 2005; pp. 188–197.

    Google Scholar 

  • van de Griend, A., Camillo, P.J.,Gurney R.J., 1985. Discrimination of soil physical parameters, thermal inertia and soil moisture from diurnal surface temperature fluctuations. Water Resources Research. 21(7):997–1009.

    Google Scholar 

  • vanZyl, J.J.; Njoku, E.G.; Jackson, T.J. Quantitative analysis of SMEX’02 AIRSAR data for soil moisture inversion. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS`03), Toulouse, France, 2003; pp. 404–406.

    Google Scholar 

  • Verhoest, N.E.C.; Troch, P.A.; Paniconi, C.; De Troch, F.P. Mapping basin scale variable source areas from multitemporal remotely sensed observations of soil moisture behavior. Water Resour. Res. 1998, 34, 3235–3244.

    Google Scholar 

  • Wagner, W.; Noll, J.; Borgeaud, M.; Rott, H. Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer. IEEE Trans. Geosci. Remote Sens. 1999, 37, 206–216.

    Google Scholar 

  • Walker, J.P.; Houser, P.R. Requirements of a global near-surface soil moisture satellite mission: accuracy, repeat time, and spatial resolution. Adv. Water Resour. 2004, 27, 785–801.

    Google Scholar 

  • Wang, C.; Qi, J. Soil moisture extraction in sparse vegetated area using SAR and TM data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2000), Honolulu, HI, USA, 2000; Vol. 3, pp. 1265–1267.

    Google Scholar 

  • Wang, J. R., P. E. O’Neill, T. J. Jackson, and E. T. Engman (1983): Multifhquency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Trans. Geosci. Rem. Sens., GE-21, 44–51.

    Google Scholar 

  • Wang, J.R.; Engman, E.T.; Shiue, J.C.; Rusek, M.; Steinmeier, C. 1986. The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers. IEEE Trans. Geosci. Remote Sens. 1986, 24, 510–516.

    Google Scholar 

  • Wang, J.R.; Hsu, A.; Shi, J.C.; O’Neill, P.E.; Engman, E.T. A comparison of soil moisture retrieval models using SIR-C measurements over the Little Washita River watershed. Remote Sens. Environ. 1997, 59, 308–320, 103.

    Google Scholar 

  • Wang, J.R. and Schmugge, T.J..1980. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sensing GE-18:288–295.

    Google Scholar 

  • Weiss, J.D. 2003.Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier. J. Air Waste Manage. Assoc. 53:1130–1148. doi:10.1080/10473289.2003.10466268.

  • Wignerona J.-P., Calvetb J.-C., Pellarinb T., Van de Griendc A. A., Bergerd M., and Ferrazzolie P., “2003. Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans,” Remote Sens. Env. 85,489–506.

    Google Scholar 

  • Williams, M.L. Potential for surface parameter estimation using compact polarimetric SAR. IEEE Geosci. Remote Sens. Lett. 2008, 5, 471–473.

    Google Scholar 

  • Zavorotny, V., K. Larson, J. Braun, E. Small, E. Gutmann, and A. Bilich. 2010. A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3:100–110. doi:10.1109/JSTARS.2009.2033608.

  • Zhang, T.; Zeng, Q.; Li, Y.; Xiang, Y. Study on relation between InSAR coherence and soil moisture. In Proceedings of the ISPRS Congress, Beijing, China, 3–11th July, 2008.

    Google Scholar 

  • Zreda, M., W.J. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, and R. Rosolem. 2012. COSMOS: The COsmic-ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. 16:4079–4099. doi:10.5194/hess-16-4079-2012.

  • Zribi, M.; Le Hégarat-Mascle, S.; Ottlé, C.; Kammoun, B.; Guerin, C. Surface soil moisture estimation from the synergistic use of the (multi-incidence and multi-resolution) active microwave ERS Wind Scatterometer and SAR data. Remote Sens. Environ. 2003, 86, 30–41. Source: http://www.fao.org/docrep/r4082e/r4082e03.htm Accessed on April 10, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shankar Dwivedi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Dwivedi, R.S. (2017). Soil Moisture Estimation. In: Remote Sensing of Soils. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53740-4_9

Download citation

Publish with us

Policies and ethics