Skip to main content

Strategies for Hydrogen Storage in Porous Organic Polymers

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

Gas storage by using porous materials has been a hot research topic in recent years. In this review, we highlight advances in porous organic polymers for their hydrogen storage applications.

Author Contribution

Dr. W. Lu conceived and wrote this chapter solely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A. Rosa, T. Dietz, Human drivers of national greenhouse-gas emissions. Nat. Clim. Chang. 2(8), 581–586 (2012)

    CAS  Google Scholar 

  2. J.T. Houghton, B.A. Callander, Climate Change 1992 (Cambridge University Press, Cambridge, 1992), pp. 5–13

    Google Scholar 

  3. N. Oreskes, The scientific consensus on climate change. Science 306(5702), 1686–1686 (2004)

    CAS  Google Scholar 

  4. R.H. Moss et al., The next generation of scenarios for climate change research and assessment. Nature 463(7282), 747–756 (2010)

    CAS  Google Scholar 

  5. F. Giorgi, L.O. Mearns, Approaches to the simulation of regional climate change: a review. Rev. Geophys. 29(2), 191–216 (1991)

    Google Scholar 

  6. M. Meinshausen et al., Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458(7242), 1158–1162 (2009)

    CAS  Google Scholar 

  7. A.M. Omer, Energy, environment and sustainable development. Renew. Sust. Energ. Rev. 12(9), 2265–2300 (2008)

    CAS  Google Scholar 

  8. D. Zhao, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal-organic frameworks. Energy Environ. Sci. 1(2), 222–235 (2008)

    CAS  Google Scholar 

  9. I. Meyer, M. Leimbach, C.C. Jaeger, International passenger transport and climate change: a sector analysis in car demand and associated CO2 emissions from 2000 to 2050. Energy Policy 35(12), 6332–6345 (2007)

    Google Scholar 

  10. M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, M.M. Bettahar, Hydrogen storage in nickel catalysts supported on activated carbon. Int. J. Hydrog. Energy 32(8), 1024–1032 (2007)

    Google Scholar 

  11. S. Satyapal et al., The US Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 120(3), 246–256 (2007)

    CAS  Google Scholar 

  12. K.M. Thomas, Hydrogen adsorption and storage on porous materials. Catal. Today 120(3), 389–398 (2007)

    CAS  Google Scholar 

  13. M.G. Nijkamp et al., Hydrogen storage using physisorption–materials demands. Appl. Phys. A 72(5), 619–623 (2001)

    CAS  Google Scholar 

  14. P. Jena, Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2(3), 206–211 (2011)

    CAS  Google Scholar 

  15. A. Züttel, Materials for hydrogen storage. Mater. Today 6(9), 24–33 (2003)

    Google Scholar 

  16. J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39(2), 656–675 (2010)

    CAS  Google Scholar 

  17. T.A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Methane storage in advanced porous materials. Chem. Soc. Rev. 41(23), 7761–7779 (2012)

    CAS  Google Scholar 

  18. M. Bastos-Neto, C. Patzschke, M. Lange, J. Mollmer, A. Moller, S. Fichtner, C. Schrage, D. Lassig, J. Lincke, R. Staudt, H. Krautscheid, R. Glaser, Assessment of hydrogen storage by physisorption in porous materials. Energy Environ. Sci. 5(8), 8294–8303 (2012)

    CAS  Google Scholar 

  19. L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1294–1314 (2009)

    CAS  Google Scholar 

  20. M.A. De la Casa-Lillo et al., Hydrogen storage in activated carbons and activated carbon fibers. J. Phys. Chem. B 106(42), 10930–10934 (2002)

    Google Scholar 

  21. J. Weitkamp, M. Fritz, S. Ernst, Zeolites as media for hydrogen storage. Int. J. Hydrog. Energy 20(12), 967–970 (1995)

    CAS  Google Scholar 

  22. X.S. Zhao, Q. Ma, G.Q. Lu, VOC removal: comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energy Fuel 12(6), 1051–1054 (1998)

    CAS  Google Scholar 

  23. C.D. Wood et al., Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater. 19(8), 2034–2048 (2007)

    CAS  Google Scholar 

  24. W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle Iii, M. Bosch, H.-C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43(16), 5561–5593 (2014)

    CAS  Google Scholar 

  25. P. Kaur, J.T. Hupp, S.T. Nguyen, Porous organic polymers in catalysis: opportunities and challenges. ACS Catal. 1(7), 819–835 (2011)

    CAS  Google Scholar 

  26. Y. Zhang, S.N. Riduan, Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 41(6), 2083–2094 (2012)

    CAS  Google Scholar 

  27. A. Modak et al., Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem. Commun. 48(2), 248–250 (2012)

    CAS  Google Scholar 

  28. H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O’Keeffe, O.M. Yaghi, Designed synthesis of 3D covalent organic frameworks. Science 316(5822), 268–272 (2007)

    CAS  Google Scholar 

  29. A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)

    Google Scholar 

  30. P.J. Langley, J. Hulliger, Nanoporous and mesoporous organic structures: new openings for materials research. Chem. Soc. Rev. 28(5), 279–291 (1999)

    CAS  Google Scholar 

  31. K.A. Cychosz, A.J. Matzger, Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water. Langmuir 26(22), 17198–17202 (2010)

    CAS  Google Scholar 

  32. P.M. Schoenecker, C.G. Carson, H. Jasuja, C.J.J. Flemming, K.S. Walton, Effect of water adsorption on retention of structure and surface area of metal–organic frameworks. Ind. Eng. Chem. Res. 51(18), 6513–6519 (2012)

    CAS  Google Scholar 

  33. N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers if intrinsic microporosity (PIMs). Chem.-Eur. J. 11(9), 2610–2620 (2005)

    CAS  Google Scholar 

  34. P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 2, 230–231 (2004)

    Google Scholar 

  35. N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35(8), 675–683 (2006)

    CAS  Google Scholar 

  36. J.X. Jiang, F.B. Su, A. Trewin, C.D. Wood, N.L. Campbell, H.J. Niu, C. Dickinson, A.Y. Ganin, M.J. Rosseinsky, Y.Z. Khimyak, A.I. Cooper, Conjugated microporous poly (aryleneethynylene) networks. Angew. Chem. Int. Ed. 46(45), 8574–8578 (2007)

    CAS  Google Scholar 

  37. K. Gergova, N. Petrov, V. Minkova, A comparison of adsorption characteristics of various activated carbons. J. Chem. Technol. Biotechnol. 56(1), 77–82 (1993)

    CAS  Google Scholar 

  38. J.X. Jiang, F. Su, A. Trewin, C.D. Wood, H. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 130(24), 7710–7720 (2008)

    CAS  Google Scholar 

  39. A.I. Cooper, Conjugated microporous polymers. Adv. Mater. 21(12), 1291–1295 (2009)

    CAS  Google Scholar 

  40. T. Ben, H. Ren, S.Q. Ma, D.P. Cao, J.H. Lan, X.F. Jing, W.C. Wang, J. Xu, F. Deng, J.M. Simmons, S.L. Qiu, G.S. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009)

    CAS  Google Scholar 

  41. P. Bénard, R. Chahine, Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr. Mater. 56(10), 803–808 (2007)

    Google Scholar 

  42. P. Bénard, R. Chahine, Modeling of adsorption storage of hydrogen on activated carbons. Int. J. Hydrog. Energy 26(8), 849–855 (2001)

    Google Scholar 

  43. M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112(2), 782–835 (2012)

    CAS  Google Scholar 

  44. M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014)

    CAS  Google Scholar 

  45. E. Poirier, R. Chahine, T.K. Bose, Hydrogen adsorption in carbon nanostructures. Int. J. Hydrog. Energy 26(8), 831–835 (2001)

    CAS  Google Scholar 

  46. I. Cabria, M.J. López, J.A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45(13), 2649–2658 (2007)

    CAS  Google Scholar 

  47. Y. Gogotsi et al., Importance of pore size in high-pressure hydrogen storage by porous carbons. Int. J. Hydrog. Energy 34(15), 6314–6319 (2009)

    CAS  Google Scholar 

  48. I. Cabria, M.J. López, J.A. Alonso, Simulation of the hydrogen storage in nanoporous carbons with different pore shapes. Int. J. Hydrog. Energy 36(17), 10748–10759 (2011)

    CAS  Google Scholar 

  49. Z. Geng, C. Zhang, D. Wang, X. Zhou, M. Cai, Pore size effects of nanoporous carbons with ultra-high surface area on high-pressure hydrogen storage. J. Energy Chem. 24(1), 1–8 (2015)

    Google Scholar 

  50. F.D. Minuto et al., Liquid-like hydrogen in the micropores of commercial activated carbons. Int. J. Hydrog. Energy 40(42), 14562–14572 (2015)

    CAS  Google Scholar 

  51. R. Ströbel et al., Hydrogen adsorption on carbon materials. J. Power Sources 84(2), 221–224 (1999)

    Google Scholar 

  52. M. Rzepka, P. Lamp, M.A. de la Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 102(52), 10894–10898 (1998)

    CAS  Google Scholar 

  53. B. Panella, M. Hirscher, Hydrogen physisorption in metal–organic porous crystals. Adv. Mater. 17(5), 538–541 (2005)

    CAS  Google Scholar 

  54. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300(5622), 1127–1129 (2003)

    CAS  Google Scholar 

  55. J.L.C. Rowsell, O.M. Yaghi, Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44(30), 4670–4679 (2005)

    CAS  Google Scholar 

  56. J.L.C. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, Hydrogen sorption in functionalized metal–organic frameworks. J. Am. Chem. Soc. 126(18), 5666–5667 (2004)

    CAS  Google Scholar 

  57. B. Kesanli, Y. Cui, M.R. Smith, E.W. Bittner, B.C. Bockrath, W. Lin, Highly interpenetrated metal–organic frameworks for hydrogen storage. Angew. Chem. Int. Ed. 44(1), 72–75 (2005)

    CAS  Google Scholar 

  58. L. Huang et al., Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater. 58(2), 105–114 (2003)

    CAS  Google Scholar 

  59. B. Chen et al., Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. Inorg. Chem. 45(15), 5718–5720 (2006)

    CAS  Google Scholar 

  60. A. Züttel, Hydrogen storage methods. Naturwissenschaften 91(4), 157–172 (2004)

    Google Scholar 

  61. F. Rouquerol, J. Rouquerol, K.S.W. Sing, G. Maurin, P. Llewellyn, 1 – Introduction, in Adsorption by Powders and Porous Solids, ed. by F.R.R.S.W.S.L. Maurin, 2nd edn. (Academic, Oxford, 2014), pp. 1–24

    Google Scholar 

  62. N.T. Stetson, S. McWhorter, C.C. Ahn, 1 – Introduction to hydrogen storage, in Compendium of Hydrogen Energy, ed. by R.B.G.B.N. Veziroğlu (Woodhead Publishing, Cambridge, 2015), pp. 3–25

    Google Scholar 

  63. O.K. Farha, A. Özgür Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2(11), 944–948 (2010)

    CAS  Google Scholar 

  64. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science 329(5990), 424–428 (2010)

    CAS  Google Scholar 

  65. J. Germain, J.M.J. Fréchet, F. Svec, Nanoporous polymers for hydrogen storage. Small 5.10, 1098–1111 (2009)

    Google Scholar 

  66. Y.-S. Bae, R.Q. Snurr, Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Microporous Mesoporous Mater. 132(1–2), 300–303 (2010)

    CAS  Google Scholar 

  67. S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage. Langmuir 22(4), 1688–1700 (2006)

    CAS  Google Scholar 

  68. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423(6941), 705–714 (2003)

    CAS  Google Scholar 

  69. N.W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O.M. Yaghi, Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 38(3), 176–182 (2005)

    CAS  Google Scholar 

  70. M. O’Keeffe, Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem. Soc. Rev. 38(5), 1215–1217 (2009)

    Google Scholar 

  71. D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Design and preparation of porous polymers. Chem. Rev. 112(7), 3959–4015 (2012)

    CAS  Google Scholar 

  72. R. Dawson, A.I. Cooper, D.J. Adams, Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012)

    CAS  Google Scholar 

  73. H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012)

    CAS  Google Scholar 

  74. O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012)

    CAS  Google Scholar 

  75. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2011)

    Google Scholar 

  76. W. Lu, W.M. Verdegaal, J. Yu, P.B. Balbuena, H.-K. Jeong, H.-C. Zhou, Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy Environ. Sci. 6(12), 3559–3564 (2013)

    CAS  Google Scholar 

  77. W. Lu, J.P. Sculley, D. Yuan, R. Krishna, H.-C. Zhou, Carbon dioxide capture from air using amine-grafted porous polymer networks. J. Phys. Chem. C 117(8), 4057–4061 (2013)

    CAS  Google Scholar 

  78. W. Lu, J.P. Sculley, D. Yuan, R. Krishna, Z. Wei, H.-C. Zhou, Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem. Int. Ed. 51(30), 7480–7484 (2012)

    CAS  Google Scholar 

  79. W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, H.-C. Zhou, Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J. Am. Chem. Soc. 133(45), 18126–18129 (2011)

    CAS  Google Scholar 

  80. W. Lu, M. Bosch, D. Yuan, H.-C. Zhou, Cost-effective synthesis of amine-tethered porous materials for carbon capture. ChemSusChem 8(3), 433–438 (2015)

    CAS  Google Scholar 

  81. W.-C. Xu et al., Investigation of hydrogen storage capacity of various carbon materials. Int. J. Hydrog. Energy 32(13), 2504–2512 (2007)

    CAS  Google Scholar 

  82. T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48(50), 9457–9460 (2009)

    CAS  Google Scholar 

  83. A. Trewin, A.I. Cooper, Porous organic polymers: distinction from disorder? Angew. Chem. Int. Ed. 49(9), 1533–1535 (2010)

    CAS  Google Scholar 

  84. D. Yuan, W. Lu, D. Zhao, H.-C. Zhou, Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 23(32), 3723–3725 (2011)

    CAS  Google Scholar 

  85. B. Chen, M. Eddaoudi, S.T. Hyde, M. O’Keeffe, O.M. Yaghi, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291(5506), 1021–1023 (2001)

    CAS  Google Scholar 

  86. J.K. Schnobrich, K. Koh, K.N. Sura, A.J. Matzger, A framework for predicting surface areas in microporous coordination polymers. Langmuir 26(8), 5808–5814 (2010)

    CAS  Google Scholar 

  87. W. Lu, D. Yuan, D. Zhao, C.I. Schilling, O. Plietzsch, T. Muller, S. Bräse, J. Guenther, J. Blümel, R. Krishna, Z. Li, H.-C. Zhou, Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem. Mater. 22(21), 5964–5972 (2010)

    CAS  Google Scholar 

  88. J. Schmidt, M. Werner, A. Thomas, Conjugated microporous polymer networks via Yamamoto polymerization. Macromolecules 42(13), 4426–4429 (2009)

    CAS  Google Scholar 

  89. J.-F. Lutz, Z. Zarafshani, Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Adv. Drug Deliv. Rev. 60(9), 958–970 (2008)

    CAS  Google Scholar 

  90. T. Muller, S. Bräse, Click chemistry finds its way into covalent porous organic materials. Angew. Chem. Int. Ed. 50(50), 11844–11845 (2011)

    CAS  Google Scholar 

  91. W. Lu, Z. Wei, D. Yuan, J. Tian, S. Fordham, H.-C. Zhou, Rational design and synthesis of porous polymer networks: toward high surface area. Chem. Mater. 26(15), 4589–4597 (2014)

    CAS  Google Scholar 

  92. A. Blomqvist, C.M. Araújo, P. Srepusharawoot, R. Ahuja, Li-decorated metal–organic framework 5: a route to achieving a suitable hydrogen storage medium. Proc. Natl. Acad. Sci. 104(51), 20173–20176 (2007)

    CAS  Google Scholar 

  93. W.-Q. Deng, X. Xu, W.A. Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. Phys. Rev. Lett. 92(16), 166103 (2004)

    Google Scholar 

  94. J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “top 10” revisited. Green Chem. 12(4), 539–554 (2010)

    CAS  Google Scholar 

  95. S.S. Han, W.A. Goddard, Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 129(27), 8422–8423 (2007)

    CAS  Google Scholar 

  96. K.L. Mulfort et al., Framework reduction and alkali-metal doping of a triply catenating metal – organic framework enhances and then diminishes H2 uptake. Langmuir 25.1, 503–508 (2008)

    Google Scholar 

  97. K.L. Mulfort, J.T. Hupp, Chemical reduction of metal–organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129(31), 9604–9605 (2007)

    CAS  Google Scholar 

  98. D. Himsl, D. Wallacher, M. Hartmann, Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. Angew. Chem. Int. Ed. 48(25), 4639–4642 (2009)

    CAS  Google Scholar 

  99. A. Mavrandonakis, E. Klontzas, E. Tylianakis, G.E. Froudakis, Enhancement of hydrogen adsorption in metal–organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study. J. Am. Chem. Soc. 131(37), 13410–13414 (2009)

    CAS  Google Scholar 

  100. A. Mavrandonakis, E. Tylianakis, A.K. Stubos, G.E. Froudakis, Why Li doping in MOFs enhances H2 storage capacity? A multi-scale theoretical study. J. Phys. Chem. C 112(18), 7290–7294 (2008)

    CAS  Google Scholar 

  101. A. Li, R.-F. Lu, Y. Wang, X. Wang, K.-L. Han, W.-Q. Deng, Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew. Chem. Int. Ed. 49(19), 3330–3333 (2010)

    CAS  Google Scholar 

  102. G. Kim et al., Crossover between multipole Coulomb and Kubas interactions in hydrogen adsorption on metal-graphene complexes. Phys. Rev. B 79.15, 155437 (2009)

    Google Scholar 

  103. A.G. Slater, A.I. Cooper, Function-led design of new porous materials. Science 348(6238) (2015). doi:10.1126/science.aaa8075

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Lu, W. (2017). Strategies for Hydrogen Storage in Porous Organic Polymers. In: Chen, YP., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53514-1_7

Download citation

Publish with us

Policies and ethics