Skip to main content

Abstract

In the past two decades, metal-organic frameworks (MOFs), constructed with coordination bonds between organic linkers and inorganic metal clusters, have become a burgeoning field of research and a great potential candidate for hydrogen storage due to their exceptional high porosity, high crystallinity, uniform yet tunable pore size and pore shape, great structural diversity, and various kinds of hydrogen occupation sites. Here, some technical elements are introduced in tailoring MOFs as hydrogen storage resins, including syntax, synthesis, fabrication, evaluation, and benchmark testing. As way of example, MOFs constructed by carboxylate, azolate or mixed linkers, are discussed in the context of hydrogen storage. Last but not least, the postsynthetic modifications on MOF materials to increase the hydrogen storage capacities will be carefully illustrated.

Author Contribution

This chapter was conceived and written by Lanfang Zou under the supervision of Prof. Hong-Cai Zhou. Dr. S. Bashir and Dr. J. Liu helped with the revision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

BDC:

Beneze-1,4-dicarboxylate

BET:

Brunauer–Emmett–Teller

BTB:

4,4′,4″-benzene-1,3,5-triyl-tribenzoate ligand

BTC:

Benzene-1,3,5-tricarboxylate

BTT:

1,3,5-benzenetristetrazolate

BTTri:

1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene

DEF:

N,N-diethylformamide

DMA:

N,N-dimethylacetamide

DMF:

N,N-dimethylformamide

GCMC:

Grand Canomical Monte Carlo simulation

HKUST:

Hong Kong University of Science and Technology

IRMOF:

Isoreticular metal-organic framework

IUPAC:

International Union of Pure and Applied Chemistry

MBB:

Molecular building block

MIL:

Material from Institute Lavoisier

MOF:

Metal-organic framework

SBB:

Super molecular building block

UMCM:

University of Michigan Crystalline Material

ZIF:

Zeolitic imidazole framework

References

  1. L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature 414(6861), 353–358 (2001)

    CAS  Google Scholar 

  2. M. Fichtner, Nanotechnological aspects in materials for hydrogen storage. Adv. Eng. Mater. 7(6), 443–455 (2005)

    CAS  Google Scholar 

  3. S.-i. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, C.M. Jensen, Complex hydrides for hydrogen storage. Chem. Rev. 107(10), 4111–4132 (2007)

    CAS  Google Scholar 

  4. Y.H. Hu, E. Ruckenstein, High reversible hydrogen capacity of LiNH2/Li3N mixtures. Ind. Eng. Chem. Res. 44(5), 1510–1513 (2005)

    CAS  Google Scholar 

  5. H.-M. Cheng, Q.-H. Yang, C. Liu, Hydrogen storage in carbon nanotubes. Carbon 39(10), 1447–1454 (2001)

    CAS  Google Scholar 

  6. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes – the route toward applications. Science 297(5582), 787–792 (2002)

    CAS  Google Scholar 

  7. J. Germain, J.M.J. Fréchet, F. Svec, Nanoporous polymers for hydrogen storage. Small 5(10), 1098–1111 (2009)

    CAS  Google Scholar 

  8. L. Zou, D. Feng, T.-F. Liu, Y.-P. Chen, S. Fordham, S. Yuan, J. Tian, H.-C. Zhou, Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts. Chem. Commun. 51(19), 4005–4008 (2015)

    CAS  Google Scholar 

  9. J. Weitkamp, M. Fritz, S. Ernst, Zeolites as media for hydrogen storage. Int. J. Hydrog. Energy 20(12), 967–970 (1995)

    CAS  Google Scholar 

  10. J. Dong, X. Wang, H. Xu, Q. Zhao, J. Li, Hydrogen storage in several microporous zeolites. Int. J. Hydrog. Energy 32(18), 4998–5004 (2007)

    CAS  Google Scholar 

  11. H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012)

    CAS  Google Scholar 

  12. A. Carne, C. Carbonell, I. Imaz, D. Maspoch, Nanoscale metal-organic materials. Chem. Soc. Rev. 40(1), 291–305 (2011)

    CAS  Google Scholar 

  13. A.U. Czaja, N. Trukhan, U. Muller, Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 38(5), 1284–1293 (2009)

    CAS  Google Scholar 

  14. T.-F. Liu, D. Feng, Y.-P. Chen, L. Zou, M. Bosch, S. Yuan, Z. Wei, S. Fordham, K. Wang, H.-C. Zhou, Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area. J. Am. Chem. Soc. 137(1), 413–419 (2015)

    CAS  Google Scholar 

  15. D. Liu, T.-F. Liu, Y.-P. Chen, L. Zou, D. Feng, K. Wang, Q. Zhang, S. Yuan, C. Zhong, H.-C. Zhou, A reversible crystallinity-preserving phase transition in metal–organic frameworks: discovery, mechanistic studies, and potential applications. J. Am. Chem. Soc. 137(24), 7740–7746 (2015)

    CAS  Google Scholar 

  16. S. Yuan, T.-F. Liu, D. Feng, J. Tian, K. Wang, J. Qin, Q. Zhang, Y.-P. Chen, M. Bosch, L. Zou, S.J. Teat, S.J. Dalgarno, H.-C. Zhou, A single crystalline porphyrinic titanium metal-organic framework. Chem. Sci. 6(7), 3926–3930 (2015)

    CAS  Google Scholar 

  17. H.W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen storage in metal-organic frameworks: a review. Electrochim. Acta 128, 368–392 (2014)

    CAS  Google Scholar 

  18. L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1294–1314 (2009)

    CAS  Google Scholar 

  19. J. Goldsmith, A.G. Wong-Foy, M.J. Cafarella, D.J. Siegel, Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem. Mater. 25(16), 3373–3382 (2013)

    CAS  Google Scholar 

  20. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300(5622), 1127–1129 (2003)

    CAS  Google Scholar 

  21. D. Zhao, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal-organic frameworks. Energy Environ. Sci. 1(2), 222–235 (2008)

    CAS  Google Scholar 

  22. M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112(2), 782–835 (2012)

    CAS  Google Scholar 

  23. M. Dincă, J.R. Long, Hydrogen storage in microporous metal–organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. 47(36), 6766–6779 (2008)

    Google Scholar 

  24. S.S. Han, J.L. Mendoza-Cortes, W.A. Goddard Iii, Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem. Soc. Rev. 38(5), 1460–1476 (2009)

    CAS  Google Scholar 

  25. J. Ren, H.W. Langmi, B.C. North, M. Mathe, Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39(5), 607–620 (2015)

    CAS  Google Scholar 

  26. M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn, J.-H. Lee, J.-S. Chang, S.H. Jhung, G. Férey, Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed. 45(48), 8227–8231 (2006)

    CAS  Google Scholar 

  27. B. Kesanli, Y. Cui, M.R. Smith, E.W. Bittner, B.C. Bockrath, W. Lin, Highly interpenetrated metal–organic frameworks for hydrogen storage. Angew. Chem. Int. Ed. 44(1), 72–75 (2005)

    CAS  Google Scholar 

  28. M. Dincǎ, A. Dailly, Y. Liu, C.M. Brown, D.A. Neumann, J.R. Long, Hydrogen storage in a microporous metal – organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 128(51), 16876–16883 (2006)

    Google Scholar 

  29. J.L.C. Rowsell, O.M. Yaghi, Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44(30), 4670–4679 (2005)

    CAS  Google Scholar 

  30. Y.E. Cheon, M.P. Suh, Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal–organic framework. Angew. Chem. Int. Ed. 48(16), 2899–2903 (2009)

    CAS  Google Scholar 

  31. O.K. Farha, A. Özgür Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2(11), 944–948 (2010)

    CAS  Google Scholar 

  32. L. Pan, M.B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J.K. Johnson, Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J. Am. Chem. Soc. 126(5), 1308–1309 (2004)

    CAS  Google Scholar 

  33. J.L.C. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, Hydrogen sorption in functionalized metal – organic frameworks. J. Am. Chem. Soc. 126(18), 5666–5667 (2004)

    CAS  Google Scholar 

  34. Y. Liu, J.F. Eubank, A.J. Cairns, J. Eckert, V.C. Kravtsov, R. Luebke, M. Eddaoudi, Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew. Chem. Int. Ed. 46(18), 3278–3283 (2007)

    CAS  Google Scholar 

  35. Y.H. Hu, L. Zhang, Hydrogen storage in metal–organic frameworks. Adv. Mater. 22(20), E117–E130 (2010)

    CAS  Google Scholar 

  36. J. Sculley, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal-organic frameworks-updated. Energy Environ. Sci. 4(8), 2721–2735 (2011)

    CAS  Google Scholar 

  37. S. Ma, H.-C. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 46(1), 44–53 (2010)

    CAS  Google Scholar 

  38. D.J. Collins, H.-C. Zhou, Hydrogen storage in metal-organic frameworks. J. Mater. Chem. 17(30), 3154–3160 (2007)

    CAS  Google Scholar 

  39. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723–1732 (1940)

    CAS  Google Scholar 

  40. T. Düren, F. Millange, G. Férey, K.S. Walton, R.Q. Snurr, Calculating geometric surface areas as a characterization tool for metal – organic frameworks. J. Phys. Chem. C 111(42), 15350–15356 (2007)

    Google Scholar 

  41. K.S. Walton, R.Q. Snurr, Applicability of the BET method for determining surface areas of microporous metal – organic frameworks. J. Am. Chem. Soc. 129(27), 8552–8556 (2007)

    CAS  Google Scholar 

  42. M.M.K. Salem, P. Braeuer, M.v. Szombathely, M. Heuchel, P. Harting, K. Quitzsch, M. Jaroniec, Thermodynamics of high-pressure adsorption of argon, nitrogen, and methane on microporous adsorbents. Langmuir 14(12), 3376–3389 (1998)

    CAS  Google Scholar 

  43. S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129(46), 14176–14177 (2007)

    CAS  Google Scholar 

  44. H. Furukawa, M.A. Miller, O.M. Yaghi, Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 17(30), 3197–3204 (2007)

    CAS  Google Scholar 

  45. S. Sircar, Gibbsian surface excess for gas adsorption revisited. Ind. Eng. Chem. Res. 38(10), 3670–3682 (1999)

    CAS  Google Scholar 

  46. A. Myers, J. Calles, G. Calleja, Comparison of molecular simulation of adsorption with experiment. Adsorption 3(2), 107–115 (1997)

    CAS  Google Scholar 

  47. L. Czepirski, J. JagieŁŁo, Virial-type thermal equation of gas – solid adsorption. Chem. Eng. Sci. 44(4), 797–801 (1989)

    CAS  Google Scholar 

  48. K.V. Kumar, G. Charalambopoulou, M. Kainourgiakis, A. Gotzias, A. Stubos, T. Steriotis, The required level of isosteric heat for the adsorptive/storage delivery of H2 in the UiO series of MOFs. RSC Adv. 4(85), 44848–44851 (2014)

    CAS  Google Scholar 

  49. Y.-S. Bae, R.Q. Snurr, Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Microporous Mesoporous Mater. 132(1–2), 300–303 (2010)

    CAS  Google Scholar 

  50. B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, Heat of adsorption for hydrogen in microporous high-surface-area materials. ChemPhysChem 9(15), 2181–2184 (2008)

    CAS  Google Scholar 

  51. A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi, Exceptional H2 saturation uptake in microporous metal – organic frameworks. J. Am. Chem. Soc. 128(11), 3494–3495 (2006)

    CAS  Google Scholar 

  52. B. Panella, M. Hirscher, H. Pütter, U. Müller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 16(4), 520–524 (2006)

    CAS  Google Scholar 

  53. A. Dailly, J.J. Vajo, C.C. Ahn, Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. J. Phys. Chem. B 110(3), 1099–1101 (2006)

    CAS  Google Scholar 

  54. M. Sabo, A. Henschel, H. Frode, E. Klemm, S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. J. Mater. Chem. 17(36), 3827–3832 (2007)

    CAS  Google Scholar 

  55. S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405), 1148–1150 (1999)

    CAS  Google Scholar 

  56. S.R. Batten, R. Robson, Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37(11), 1460–1494 (1998)

    Google Scholar 

  57. H. Frost, T. Düren, R.Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal – organic frameworks. J. Phys. Chem. B 110(19), 9565–9570 (2006)

    CAS  Google Scholar 

  58. G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 24, 2976–2977 (2003)

    Google Scholar 

  59. C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G. Férey, Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x·H2Oy. J. Am. Chem. Soc. 124(45), 13519–13526 (2002)

    CAS  Google Scholar 

  60. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743), 2040–2042 (2005)

    Google Scholar 

  61. G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. Int. Ed. 43(46), 6296–6301 (2004)

    Google Scholar 

  62. P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J.-S. Chang, D.-Y. Hong, Y. Kyu Hwang, S. Hwa Jhung, G. Férey, High uptakes of CO2 and CH4 in mesoporous metal – organic frameworks MIL-100 and MIL-101. Langmuir 24(14), 7245–7250 (2008)

    CAS  Google Scholar 

  63. D. Feng, K. Wang, Z. Wei, Y.-P. Chen, C.M. Simon, R.K. Arvapally, R.L. Martin, M. Bosch, T.-F. Liu, S. Fordham, D. Yuan, M.A. Omary, M. Haranczyk, B. Smit, H.-C. Zhou, Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nat. Commun. 5, 5723 (2014)

    Google Scholar 

  64. A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43(1), 58–67 (2010)

    CAS  Google Scholar 

  65. H. Wu, W. Zhou, T. Yildirim, Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J. Am. Chem. Soc. 129(17), 5314–5315 (2007)

    CAS  Google Scholar 

  66. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103(27), 10186–10191 (2006)

    CAS  Google Scholar 

  67. A.U. Ortiz, A. Boutin, A.H. Fuchs, F.-X. Coudert, Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening. J. Phys. Chem. Lett. 4(11), 1861–1865 (2013)

    CAS  Google Scholar 

  68. A. Demessence, D.M. D’Alessandro, M.L. Foo, J.R. Long, Strong CO2 binding in a water-stable, triazolate-bridged metal – organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131(25), 8784–8786 (2009)

    CAS  Google Scholar 

  69. F. Nouar, J.F. Eubank, T. Bousquet, L. Wojtas, M.J. Zaworotko, M. Eddaoudi, Supermolecular Building Blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. J. Am. Chem. Soc. 130(6), 1833–1835 (2008)

    CAS  Google Scholar 

  70. T.-F. Liu, L. Zou, D. Feng, Y.-P. Chen, S. Fordham, X. Wang, Y. Liu, H.-C. Zhou, Stepwise synthesis of robust metal–organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. J. Am. Chem. Soc. 136(22), 7813–7816 (2014)

    CAS  Google Scholar 

  71. L. Zou, D. Feng, T.-F. Liu, Y.-P. Chen, S. Yuan, K. Wang, X. Wang, S. Fordham, H.-C. Zhou, A versatile synthetic route for the preparation of titanium metal-organic frameworks. Chem. Sci. 7(2), 1063–1069 (2016)

    Google Scholar 

  72. X. Lian, D. Feng, Y.-P. Chen, T.-F. Liu, X. Wang, H.-C. Zhou, The preparation of an ultrastable mesoporous Cr(iii)-MOF via reductive labilization. Chem. Sci. 6(12), 7044–7048 (2015)

    CAS  Google Scholar 

  73. Y.K. Hwang, D.-Y. Hong, J.-S. Chang, S.H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47(22), 4144–4148 (2008)

    CAS  Google Scholar 

  74. M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, R.A. Fischer, Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem. 2010(24), 3701–3714 (2010)

    Google Scholar 

  75. O.K. Farha, K.L. Mulfort, J.T. Hupp, An example of node-based postassembly elaboration of a hydrogen-sorbing, metal – organic framework material. Inorg. Chem. 47(22), 10223–10225 (2008)

    CAS  Google Scholar 

  76. H.J. Park, Y.E. Cheon, M.P. Suh, Post-synthetic reversible incorporation of organic linkers into porous metal–organic frameworks through single-crystal-to-single-crystal transformations and modification of gas-sorption properties. Chem. Eur. J. 16(38), 11662–11669 (2010)

    CAS  Google Scholar 

  77. Z. Wang, K.K. Tanabe, S.M. Cohen, Tuning hydrogen sorption properties of metal–organic frameworks by postsynthetic covalent modification. Chem. Eur. J. 16(1), 212–217 (2010)

    Google Scholar 

  78. S.S. Han, W.A. Goddard, Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 129(27), 8422–8423 (2007)

    CAS  Google Scholar 

  79. A. Mavrandonakis, E. Tylianakis, A.K. Stubos, G.E. Froudakis, Why Li doping in MOFs enhances H2 storage capacity? A multi-scale theoretical study. J. Phys. Chem. C 112(18), 7290–7294 (2008)

    CAS  Google Scholar 

  80. G. Férey, F. Millange, M. Morcrette, C. Serre, M.-L. Doublet, J.-M. Grenèche, J.-M. Tarascon, Mixed-valence Li/Fe-based metal–organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 46(18), 3259–3263 (2007)

    Google Scholar 

  81. Y. Zhang, L.G. Scanlon, M.A. Rottmayer, P.B. Balbuena, Computational investigation of adsorption of molecular hydrogen on lithium-doped corannulene. J. Phys. Chem. B 110(45), 22532–22541 (2006)

    CAS  Google Scholar 

  82. A. Blomqvist, C.M. Araújo, P. Srepusharawoot, R. Ahuja, Li-decorated metal–organic framework 5: a route to achieving a suitable hydrogen storage medium. Proc. Natl. Acad. Sci. 104(51), 20173–20176 (2007)

    CAS  Google Scholar 

  83. K.L. Mulfort, J.T. Hupp, Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. Inorg. Chem. 47(18), 7936–7938 (2008)

    CAS  Google Scholar 

  84. K.L. Mulfort, J.T. Hupp, Chemical reduction of metal – organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129(31), 9604–9605 (2007)

    CAS  Google Scholar 

  85. Y. Li, R.T. Yang, Significantly enhanced hydrogen storage in metal – organic frameworks via spillover. J. Am. Chem. Soc. 128(3), 726–727 (2006)

    CAS  Google Scholar 

  86. Y. Li, R.T. Yang, Hydrogen storage in metal – organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128(25), 8136–8137 (2006)

    CAS  Google Scholar 

  87. Y. Li, R.T. Yang, Gas adsorption and storage in metal – organic framework MOF-177. Langmuir 23(26), 12937–12944 (2007)

    CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015. This work is also supported as part of the Hydrogen and Fuel Cell Program under Award Number DE-EE-0007049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Cai Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zou, L., Zhou, HC. (2017). Hydrogen Storage in Metal-Organic Frameworks. In: Chen, YP., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53514-1_5

Download citation

Publish with us

Policies and ethics