Skip to main content

Transition Metal Complexes for Hydrogen Activation

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

Hydrogen activation is a very important industrial process for hydrogenation reactions and ammonia production. The hydrogen splitting and hydride transfer process can be classified as homolytic and heterolytic cleavage of molecular hydrogen on mono- and multinuclear transition metal centers. Hydrogenase enzymes have inspired researchers in the field of organometallic chemistry to develop small molecule structural models of active sites and thus to mimic the biological system to activate molecular hydrogen. Multinuclear cluster complexes, including those containing heavy main group metals, can bind hydrogen molecule under mild conditions in a reversible fashion. This chapter aims at providing introductory review to cover various types of transition metal complexes that can split molecular hydrogen. The interaction between hydrogen molecule and metal centers, which determines the distance between two hydrogen atoms, will affect hydrogen splitting. The mechanism of such interactions will be discussed in details. Hydrogenation reactions catalyzed by transition metal complexes or heterogeneous nanocatalysts derived from metal cluster complexes will also be introduced.

Author Contribution

The chapter context was mainly compiled by Dr. Y. Kan under the supervision of Dr. Q. Zhang. The introduction part, chemical expression, and the revision of other subsections were examined and corrected by Dr. J. Liu and Dr. S. Bashir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BArF :

[B{C6H3(CF3)2}4

Bn:

Benzyl

bq:

7,8-Benzoquinolato

CDA:

Cyclododecane

CDE:

Cyclododecene

CDT:

Cyclododecatriene

COD:

1,5-Cyclooctadiene

Cp:

η5-Cyclopentadienyl

Cy:

Cyclohexyl

DFT:

Density functional theory

depe:

1,2-bis(diethylphosphino)ethane

dppe:

1,2-bis(diphenylphosphino)ethane

EAC:

Ethyl (Z)-1-acetamidocinnamate

EPR:

Electron paramagnetic resonance

EXAFS:

Extended X-ray absorption fine structure

Fc:

Ferrocene

NMR:

Nuclear magnetic resonance

PCy3 :

Tricyclohexylphosphine ligand

PiPr3 :

Triisopropylphosphine ligand

PR2 :

Phosphido ligand

PR3 :

Phosphine ligand

Py:

Pyridine

ROP:

Ring opening polymerization

TOF:

Turnover Frequency

Tp:

Trispyrazolylborate

References

  1. J.N. Armor, Catalysis and the hydrogen economy. Catal. Lett. 101(3–4), 131–135 (2005)

    CAS  Google Scholar 

  2. J.M. Thomas, R. Raja, B.F.G. Johnson, S. Hermans, M.D. Jones, T. Khimyak, Bimetallic catalysts and their relevance to the hydrogen economy. Ind. Eng. Chem. Res. 42(8), 1563–1570 (2003)

    CAS  Google Scholar 

  3. S.S. Bath, L. Vaska, Five-coordinate hydrido-carbonyl complexes of rhodium and iridium and their analogy with CoH(CO)4. J. Am. Chem. Soc. 85(21), 3500–3501 (1963)

    CAS  Google Scholar 

  4. F. Maseras, A. Lledós, E. Clot, O. Eisenstein, Transition metal polyhydrides: from qualitative ideas to reliable computational studies. Chem. Rev. 100(2), 601–636 (2000)

    CAS  Google Scholar 

  5. W. Hieber, F. Leutert, Zur Kenntnis des koordinativ gebundenen Kohlenoxyds: Bildung von Eisencarbonylwasserstoff. Naturwissenschaften 19(17), 360–361 (1931)

    CAS  Google Scholar 

  6. P.J. Craig, The organometallic chemistry of the transition metals. R H Crabtree, John Wiley and Sons (Wiley Interscience), New York, Chichester, Brisbane, Toronto, Singapore, 1988. £36.45. ISBN 0 471853062. Appl. Organomet. Chem. 3(6), 563 (1989)

    Google Scholar 

  7. P.J. Brothers, Heterolytic activation of hydrogen by transition metal complexes, in Prog. Inorg. Chem. (Wiley, New York, 2007), pp. 1–61

    Google Scholar 

  8. M.M.T. Khan, A.E. Martell, 1 – Activation of molecular hydrogen, in Activation of Small Inorganic Molecules, ed. by M.M.T.K.E. Martell (Academic, New York, 1974), pp. 1–77

    Google Scholar 

  9. G.J. Kubas, R.R. Ryan, B.I. Swanson, P.J. Vergamini, H.J. Wasserman, Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J. Am. Chem. Soc. 106(2), 451–452 (1984)

    CAS  Google Scholar 

  10. J. Kubas Gregory, Molecular hydrogen complexes: coordination of a.sigma. bond to transition metals. Acc. Chem. Res. 21(3), 120–128 (1988)

    Google Scholar 

  11. G.J. Kubas, Metal Dihydrogen and Bond Complexes: Structure Theory and Reactivity (Kluwer Academic/Plenum Publishers, New York, 2011), p. 472

    Google Scholar 

  12. P.G. Jessop, R.H. Morris, Reactions of transition metal dihydrogen complexes. Coord. Chem. Rev. 121, 155–284 (1992)

    CAS  Google Scholar 

  13. H. Berke, Conceptual approach to the reactivity of dihydrogen. ChemPhysChem 11(9), 1837–1849 (2010)

    CAS  Google Scholar 

  14. G.J. Kubas, Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 107(10), 4152–4205 (2007)

    CAS  Google Scholar 

  15. J. Halpern, The catalytic activation of hydrogen in homogeneous, heterogeneous, and biological systems, in Advances in Catalysis, ed. by D.D. Eley, P. W. S., B.W. Paul, vol 11 (Academic, New York, 1959), pp. 301–370

    Google Scholar 

  16. C. Pettinari, F. Marchetti, D. Martini, Metal complexes as hydrogenation catalysts, in Comprehensive Coordination Chemistry II, ed. by J.A.M.J. Meyer (Pergamon, Oxford, 2003), pp. 75–139

    Google Scholar 

  17. B.R. James, Hydrogenation reactions catalyzed by transition metal complexes, in Adv. Organomet. Chem. ed. by F.G.A. Stone, W. Robert, vol 17 (Academic, New York, 1979), pp. 319–405

    Google Scholar 

  18. L.A. Oro, D. Carmona, Rhodium, in The Handbook of Homogeneous Hydrogenation (Wiley-VCH Verlag GmbH, Weinheim, 2008), pp. 2–30

    Google Scholar 

  19. R.H. Crabtree, Iridium, in The Handbook of Homogeneous Hydrogenation (Wiley-VCH Verlag GmbH, Weinheim, 2008), pp. 31–44

    Google Scholar 

  20. J.A. Osborn, F.H. Jardine, J.F. Young, G. Wilkinson, The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J. Chem. Soc. A: Inorg. Phys. Theor. (0), 1711–1732 (1966)

    Google Scholar 

  21. R.R. Schrock, J.A. Osborn, Catalytic hydrogenation using cationic rhodium complexes. 3. The selective hydrogenation of dienes to monoenes. J. Am. Chem. Soc. 98(15), 4450–4455 (1976)

    CAS  Google Scholar 

  22. R. Crabtree, Iridium compounds in catalysis. Acc. Chem. Res. 12(9), 331–337 (1979)

    CAS  Google Scholar 

  23. P. Gallezot, Hydrogenation – heterogeneous, in Encyclopedia of Catalysis (Wiley, New York, 2002)

    Google Scholar 

  24. I. Horiuti, M. Polanyi, Exchange reactions of hydrogen on metallic catalysts. Trans. Faraday Soc. 30, 1164–1172 (1934)

    Google Scholar 

  25. E.L. Muetterties, T.N. Rhodin, E. Band, C.F. Brucker, W.R. Pretzer, Clusters and surfaces. Chem. Rev. 79(2), 91–137 (1979)

    CAS  Google Scholar 

  26. E.L. Muetterties, S.T. Olin, Metal clusters in catalysis VIII. Reduction of triple bonds. Bull. Soc. Chim. Belg. 85(7), 451–470 (1976)

    CAS  Google Scholar 

  27. M.Y. Darensbourg, E.J. Lyon, J.J. Smee, The bio-organometallic chemistry of active site iron in hydrogenases. Coord. Chem. Rev. 206–207, 533–561 (2000)

    Google Scholar 

  28. L. Vaska, J.W. DiLuzio, Activation of hydrogen by a transition metal complex at normal conditions leading to a stable molecular dihydride. J. Am. Chem. Soc. 84(4), 679–680 (1962)

    CAS  Google Scholar 

  29. C.E. Johnson, R. Eisenberg, Stereoselective oxidative addition of hydrogen to iridium(I) complexes. Kinetic control based on ligand electronic effects. J. Am. Chem. Soc. 107(11), 3148–3160 (1985)

    CAS  Google Scholar 

  30. G.J. Kubas, R.R. Ryan, D.A. Wrobleski, Molecular hydrogen complexes of the transition metals. 3. Evidence for a new complex, Mo(CO)(dppe)2(H2), and for solution equilibrium between dihydrogen and dihydride forms, M-.eta.2-H2.dblarw. H-M-H, in M(CO)3(PR3)2(H2). J. Am. Chem. Soc. 108(6), 1339–1341 (1986)

    CAS  Google Scholar 

  31. M.T. Haward, M.W. George, P. Hamley, M. Poliakoff, Dihydride versus dihydrogen complex; the photochemical reaction of (η5-C5H5)M(CO)4(M = V, Nb and Ta) with hydrogen in solution at both cryogenic and room temperatures. J. Chem. Soc. Chem. Commun. (16), 1101–1103 (1991)

    Google Scholar 

  32. D.M. Heinekey, J.K. Law, S.M. Schultz, Kubas complexes revisited: novel dihydride complexes of tungsten. J. Am. Chem. Soc. 123(50), 12728–12729 (2001)

    CAS  Google Scholar 

  33. G.J. Kubas, R.R. Ryan, C.J. Unkefer, Molecular hydrogen complexes. 5. Electronic control of η2-H2 vs. dihydride coordination. Dihydride structure of MoH2(CO)(R2PC2H4PR2)2 for R = Et, iso-Bu versus η2-H2 for R = Ph. J. Am. Chem. Soc. 109(26), 8113–8115 (1987)

    CAS  Google Scholar 

  34. G.J. Kubas, C.J. Burns, J. Eckert, S.W. Johnson, A.C. Larson, P.J. Vergamini, C.J. Unkefer, G.R.K. Khalsa, S.A. Jackson, O. Eisenstein, Neutron structure and inelastic-neutron-scattering and theoretical studies of molybdenum complex Mo(CO)(H2)[(C6D5)2PC2H4P(C6D5)2]2·4.5C6D6, a complex with an extremely low barrier to hydrogen rotation. Implications on the reaction coordinate for H-H cleavage to dihydride. J. Am. Chem. Soc. 115(2), 569–581 (1993)

    CAS  Google Scholar 

  35. R.H. Crabtree, M. Lavin, C-H and H-H bond activation; dissociative vs. nondissociative binding to iridium. J. Chem. Soc. Chem. Commun. (12), 794–795 (1985)

    Google Scholar 

  36. A.N. Khlobystov, A.J. Blake, N.R. Champness, D.A. Lemenovskii, A.G. Majouga, N.V. Zyk, M. Schröder, Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands. Coord. Chem. Rev. 222(1), 155–192 (2001)

    CAS  Google Scholar 

  37. J. Tomàs, A. Lledós, Y. Jean, The Kubas complex revisited. A theoretical study of dihydrogen addition and structure of the dihydride form. Organometallics 17(2), 190–195 (1998)

    Google Scholar 

  38. F. Maseras, M. Duran, A. Lledos, J. Bertran, Molecular hydrogen complexes with a hydride ligand. An ab initio study on the iron hydride, [Fe(PR3)4H(H2)]+, system. J. Am. Chem. Soc. 113(8), 2879–2884 (1991)

    CAS  Google Scholar 

  39. J. Pospech, I. Fleischer, R. Franke, S. Buchholz, M. Beller, Alternative metals for homogeneous catalyzed hydroformylation reactions. Angew. Chem. Int. Ed. 52(10), 2852–2872 (2013)

    CAS  Google Scholar 

  40. S. Tan, C.T. Williams, An in situ spectroscopic study of prochiral reactant–chiral modifier interactions on palladium catalyst: case of alkenoic acid and cinchonidine in various solvents. J. Phys. Chem. C 117(35), 18043–18052 (2013)

    CAS  Google Scholar 

  41. S. Tan, J. Monnier, C. Williams, Kinetic study of asymmetric hydrogenation of α, β-unsaturated carboxylic acid over cinchona-modified Pd/Al2O3 catalyst. Top. Catal. 55(7–10), 512–517 (2012)

    CAS  Google Scholar 

  42. R. Noyori, H. Takaya, BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res. 23(10), 345–350 (1990)

    CAS  Google Scholar 

  43. T. Hayashi, Chiral monodentate phosphine ligand MOP for transition-metal-catalyzed asymmetric reactions. Acc. Chem. Res. 33(6), 354–362 (2000)

    CAS  Google Scholar 

  44. M.J. Burk, Modular phospholane ligands in asymmetric catalysis. Acc. Chem. Res. 33(6), 363–372 (2000)

    CAS  Google Scholar 

  45. W.S. Knowles, Asymmetric hydrogenation. Acc. Chem. Res. 16(3), 106–112 (1983)

    CAS  Google Scholar 

  46. W.S. Knowles, Application of organometallic catalysis to the commercial production of l-DOPA. J. Chem. Educ. 63(3), 222 (1986)

    CAS  Google Scholar 

  47. J. Halpern, 2 – Asymmetric catalytic hydrogenation: mechanism and origin of enantioselection, in Asymmetric Synthesis, ed. by J.D. Morrison (Academic, San Diego, 1985), pp. 41–69

    Google Scholar 

  48. I.D. Gridnev, T. Imamoto, On the mechanism of stereoselection in Rh-catalyzed asymmetric hydrogenation: a general approach for predicting the sense of enantioselectivity. Acc. Chem. Res. 37(9), 633–644 (2004)

    CAS  Google Scholar 

  49. C.R. Landis, J. Halpern, Asymmetric hydrogenation of methyl (Z)-.alpha.-acetamidocinnamate catalyzed by [1,2-bis(phenyl-o-anisoyl)phosphino)ethane]rhodium(I): kinetics, mechanism and origin of enantioselection. J. Am. Chem. Soc. 109(6), 1746–1754 (1987)

    CAS  Google Scholar 

  50. R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, S. Akutagawa, Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J. Am. Chem. Soc. 109(19), 5856–5858 (1987)

    CAS  Google Scholar 

  51. T. Liu, D.L. DuBois, R.M. Bullock, An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nat. Chem. 5(3), 228–233 (2013)

    CAS  Google Scholar 

  52. D.M.P. Mingos, Polyhedral skeletal electron pair approach. Acc. Chem. Res. 17(9), 311–319 (1984)

    CAS  Google Scholar 

  53. A.S. Weller, J.S. McIndoe, Reversible binding of dihydrogen in multimetallic complexes. Eur. J. Inorg. Chem. 2007(28), 4411–4423 (2007)

    Google Scholar 

  54. R.W. Broach, J.M. Williams, Interaction of hydrogen and hydrocarbons with transition metals. Neutron diffraction study of di-.mu.-hydrido-decacarbonyltriosmium, (μ-H)2Os3(CO)10, containing a four-center four-electron hydrogen-osmium (H2Os2) bond. Inorg. Chem. 18(2), 314–319 (1979)

    CAS  Google Scholar 

  55. R.D. Wilson, R. Bau, The molecular structure of dodecacarbonyltetra-.mu.3-hydrotetrarhenium. Evidence for face-bridging hydrogen atoms. J. Am. Chem. Soc. 98(15), 4687–4689 (1976)

    CAS  Google Scholar 

  56. R.D. Adams, Y. Kan, Q. Zhang, M.B. Hall, E. Trufan, Bonding and reactivity in the electronically unsaturated hydrogen-bridged dimer [Ru3(CO)8(μ3-CMe)(μ-H)2(μ3-H)]2. Organometallics 31(1), 50–53 (2012)

    CAS  Google Scholar 

  57. M.J. Ingleson, M.F. Mahon, P.R. Raithby, A.S. Weller, [(iPr3P)6Rh6H12]2+: a high-hydride content octahedron that bridges the gap between late and early transition metal clusters. J. Am. Chem. Soc. 126(15), 4784–4785 (2004)

    CAS  Google Scholar 

  58. S.K. Brayshaw, M.J. Ingleson, J.C. Green, P.R. Raithby, G. Kociok-Köhn, J.S. McIndoe, A.S. Weller, Holding onto lots of hydrogen: a 12-hydride rhodium cluster that reversibly adds two molecules of H2. Angew. Chem. Int. Ed. 44(42), 6875–6878 (2005)

    CAS  Google Scholar 

  59. R.D. Adams, B. Captain, Hydrogen activation by unsaturated mixed-metal cluster complexes: new directions. Angew. Chem. Int. Ed. 47(2), 252–257 (2008)

    CAS  Google Scholar 

  60. R.D. Adams, B. Captain, L. Zhu, Facile activation of hydrogen by an unsaturated platinum–osmium cluster complex. J. Am. Chem. Soc. 129(9), 2454–2455 (2007)

    CAS  Google Scholar 

  61. R.D. Adams, B. Captain, A highly unsaturated platinum–rhenium cluster complex that adds an unusually large amount of hydrogen. Angew. Chem. Int. Ed. 44(17), 2531–2533 (2005)

    CAS  Google Scholar 

  62. R.D. Adams, B. Captain, C. Beddie, M.B. Hall, Photoreversible multiple additions of hydrogen to a highly unsaturated platinum–rhenium cluster complex. J. Am. Chem. Soc. 129(4), 986–1000 (2007)

    CAS  Google Scholar 

  63. R.D. Adams, B. Captain, Unusual structures and reactivity of mixed metal cluster complexes containing the palladium/platinum Tri-t-butylphosphine grouping. Acc. Chem. Res. 42(3), 409–418 (2009)

    CAS  Google Scholar 

  64. J.F. Harrod, A.J. Chalk, Homogeneous catalysis. III. Isomerization of deuterio olefins by group VIII metal complexes. J. Am. Chem. Soc. 88(15), 3491–3497 (1966)

    CAS  Google Scholar 

  65. R.D. Adams, T.S. Barnard, Z. Li, W. Wu, J. Yamamoto, Catalytic hydrogenation of diphenylacetylene by a layer-segregated platinum-ruthenium cluster complex. J. Am. Chem. Soc. 116(20), 9103–9113 (1994)

    CAS  Google Scholar 

  66. A. Volbeda, L. Martin, C. Cavazza, M. Matho, B. Faber, W. Roseboom, S.J. Albracht, E. Garcin, M. Rousset, J. Fontecilla-Camps, Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. JBIC 10(3), 239–249 (2005)

    CAS  Google Scholar 

  67. E. Garcin, X. Vernede, E.C. Hatchikian, A. Volbeda, M. Frey, J.C. Fontecilla-Camps, The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7(5), 557–566 (1999)

    CAS  Google Scholar 

  68. A. Volbeda, E. Garcin, C. Piras, A.L. de Lacey, V.M. Fernandez, E.C. Hatchikian, M. Frey, J.C. Fontecilla-Camps, Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J. Am. Chem. Soc. 118(51), 12989–12996 (1996)

    CAS  Google Scholar 

  69. H. Ogata, Y. Mizoguchi, N. Mizuno, K. Miki, S.-I. Adachi, N. Yasuoka, T. Yagi, O. Yamauchi, S. Hirota, Y. Higuchi, Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. J. Am. Chem. Soc. 124(39), 11628–11635 (2002)

    CAS  Google Scholar 

  70. Y. Montet, P. Amara, A. Volbeda, X. Vernede, E.C. Hatchikian, M.J. Field, M. Frey, J.C. Fontecilla-Camps, Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat. Struct. Mol. Biol. 4(7), 523–526 (1997)

    CAS  Google Scholar 

  71. P.E.M. Siegbahn, J.W. Tye, M.B. Hall, Computational studies of [NiFe] and [FeFe] hydrogenases. Chem. Rev. 107(10), 4414–4435 (2007)

    CAS  Google Scholar 

  72. M. Bruschi, M. Tiberti, A. Guerra, L. De Gioia, Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases. J. Am. Chem. Soc. 136(5), 1803–1814 (2014)

    CAS  Google Scholar 

  73. W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Hydrogenases. Chem. Rev. 114(8), 4081–4148 (2014)

    CAS  Google Scholar 

  74. M. Brecht, M. van Gastel, T. Buhrke, B. Friedrich, W. Lubitz, Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J. Am. Chem. Soc. 125(43), 13075–13083 (2003)

    CAS  Google Scholar 

  75. J.P. Whitehead, R.J. Gurbiel, C. Bagyinka, B.M. Hoffman, M.J. Maroney, The hydrogen binding site in hydrogenase: 35-GHz ENDOR and XAS studies of the nickel-C (reduced and active form) and the Ni-L photoproduct. J. Am. Chem. Soc. 115(13), 5629–5635 (1993)

    CAS  Google Scholar 

  76. C. Tard, C.J. Pickett, Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109(6), 2245–2274 (2009)

    CAS  Google Scholar 

  77. Y. Ohki, K. Tatsumi, Thiolate-bridged iron–nickel models for the active site of [NiFe] hydrogenase. Eur. J. Inorg. Chem. 2011(7), 973–985 (2011)

    Google Scholar 

  78. F. Gloaguen, T.B. Rauchfuss, Small molecule mimics of hydrogenases: hydrides and redox. Chem. Soc. Rev. 38(1), 100–108 (2009)

    CAS  Google Scholar 

  79. J.M. Camara, T.B. Rauchfuss, Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase. Nat. Chem. 4(1), 26–30 (2012)

    CAS  Google Scholar 

  80. M. Ichikawa, Metal cluster compounds as molecular precursors for tailored metal catalysts, in Advances in Catalysis, ed. by D.D. Eley, H. P., B.W. Paul, vol 38 (Academic, New York, 1992), pp. 283–400

    Google Scholar 

  81. D.W. Goodman, J.E. Houston, Catalysis: new perspectives from surface science. Science 236(4800), 403–409 (1987)

    CAS  Google Scholar 

  82. J. Xiao, R.J. Puddephatt, Pt-Re clusters and bimetallic catalysts. Coord. Chem. Rev. 143, 457–500 (1995)

    CAS  Google Scholar 

  83. M.J. Dees, V. Ponec, On the influence of sulfur on the platinum/iridium bimetallic catalysts in n-hexane/hydrogen reactions. J. Catal. 115(2), 347–355 (1989)

    CAS  Google Scholar 

  84. R.W. Rice, K. Lu, Comparison of platinum and platinum-iridium catalysts for heptane reforming at different pressures. J. Catal. 77(1), 104–117 (1982)

    CAS  Google Scholar 

  85. J.C. Rasser, W.H. Beindorff, J.J.F. Scholten, Characterization and performance of platinum-iridium reforming catalysts. J. Catal. 59(2), 211–222 (1979)

    CAS  Google Scholar 

  86. J.H. Sinfelt, Bifunctional catalysis, in Advances in Chemical Engineering, ed. by T.B. Drew, J. W. H. T. V., R.C. Giles, vol 5 (Academic, New York, 1964), pp. 37–74

    Google Scholar 

  87. J. Schwank, Bimetallic catalysts: discoveries, concepts, and applications. By John H. Sinfelt, John Wiley & Sons, 1983. XI+164 pp. AlChE J. 31(8), 1405 (1985)

    Google Scholar 

  88. J.H. Sinfelt, G.H. Via, Dispersion and structure of platinum-iridium catalysts. J. Catal. 56(1), 1–11 (1979)

    CAS  Google Scholar 

  89. B.D. Chandler, A.B. Schabel, C.F. Blanford, L.H. Pignolet, Preparation and characterization of supported bimetallic Pt–Au particle catalysts from molecular cluster and chloride salt precursors. J. Catal. 187(2), 367–384 (1999)

    CAS  Google Scholar 

  90. B.D. Chandler, A.B. Schabel, L.H. Pignolet, Preparation and characterization of supported bimetallic Pt–Au and Pt–Cu catalysts from bimetallic molecular precursors. J. Catal. 193(2), 186–198 (2000)

    CAS  Google Scholar 

  91. F. Schüth, K. Unger, Precipitation and coprecipitation, in Preparation of Solid Catalysts (Wiley-VCH Verlag GmbH, Weinheim, 2008), pp. 60–84

    Google Scholar 

  92. S. Tan, X. Sun, C.T. Williams, In situ ATR-IR study of prochiral 2-methyl-2-pentenoic acid adsorption on Al2O3 and Pd/Al2O3. PCCP 13(43), 19573–19579 (2011)

    CAS  Google Scholar 

  93. G. Chen, S. Tan, W.J. Koros, C.W. Jones, Metal organic frameworks for selective adsorption of t-Butyl mercaptan from natural gas. Energy Fuel 29(5), 3312–3321 (2015)

    CAS  Google Scholar 

  94. Chapter 7: Preparation and characterization of metal and alloy catalysts, in Stud. Surf. Sci. Catal., vol. 95, ed. by P. Vladimir, C. B. Geoffrey (Elsevier, 1995), pp. 299–391

    Google Scholar 

  95. L. Mond, C. Langer, F. Quincke, L.-Action of carbon monoxide on nickel. J. Chem. Soc. Trans. 57, 749–753 (1890)

    CAS  Google Scholar 

  96. A.K. Smith, J.M. Basset, Transition metal cluster complexes as catalysts. A review. J. Mol. Catal. 2(4), 229–241 (1977)

    CAS  Google Scholar 

  97. J.M. Thomas, B.F.G. Johnson, R. Raja, G. Sankar, P.A. Midgley, High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 36(1), 20–30 (2003)

    CAS  Google Scholar 

  98. O.S. Alexeev, B.C. Gates, Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res. 42(8), 1571–1587 (2003)

    CAS  Google Scholar 

  99. E.G. Mednikov, S.A. Ivanov, I.V. Slovokhotova, L.F. Dahl, Nanosized [Pd52(CO)36(PEt3)14] and [Pd66(CO)45(PEt3)16] clusters based on a hypothetical Pd38 vertex-truncated ν3 octahedron. Angew. Chem. Int. Ed. 44(42), 6848–6854 (2005)

    CAS  Google Scholar 

  100. N.T. Tran, D.R. Powell, L.F. Dahl, Nanosized Pd145(CO)x(PEt3)30 containing a capped three-shell 145-atom metal-core geometry of pseudo icosahedral symmetry. Angew. Chem. Int. Ed. 39(22), 4121–4125 (2000)

    CAS  Google Scholar 

  101. S. Zacchini, Using metal carbonyl clusters to develop a molecular approach towards metal nanoparticles. Eur. J. Inorg. Chem. 2011(27), 4125–4145 (2011)

    CAS  Google Scholar 

  102. R.D. Adams, J.E. Babin, M. Tasi, J.G. Wang, Catalyst design. The activation of a trinuclear metal cluster complex by metal atom substitution. Organometallics 7(3), 755–764 (1988)

    CAS  Google Scholar 

  103. M. Castiglioni, R. Giordano, E. Sappa, Phosphine-substituted and phosphido-bridged metal clusters in homogeneous catalysis. J. Organomet. Chem. 342(1), 111–127 (1988)

    CAS  Google Scholar 

  104. M. Castiglioni, R. Giordano, E. Sappa, Homogeneous catalytic hydrogenation and isomerization of linear and cyclic monoenes and dienes in the presence of the heterometallic cluster (η5-C5H5)NiRu3(μ-H)3(CO)9. J. Organomet. Chem. 319(2), 167–181 (1987)

    CAS  Google Scholar 

  105. B.D. Dombek, Synergistic behavior of homogeneous ruthenium-rhodium catalysts for hydrogenation of carbon monoxide. Organometallics 4(10), 1707–1712 (1985)

    CAS  Google Scholar 

  106. P. Buchwalter, J. Rosé, P. Braunstein, Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 115(1), 28–126 (2015)

    CAS  Google Scholar 

  107. R. Raja, S. Hermans, D. Shephard, B.F.G. Johnson, R. Raja, G. Sankar, S. Bromley, J. Meurig Thomas, Preparation and characterisation of a highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst[dagger]. Chem. Commun. (16), 1571–1572 (1999)

    Google Scholar 

  108. T. Ekou, A. Vicente, G. Lafaye, C. Especel, P. Marecot, Bimetallic Rh-Ge and Pt-Ge catalysts supported on TiO2 for citral hydrogenation: II. Catalytic properties. Appl. Catal. A Gen. 314(1), 73–80 (2006)

    CAS  Google Scholar 

  109. G. Lafaye, C. Micheaud-Especel, C. Montassier, P. Marecot, Characterization of bimetallic rhodium-germanium catalysts prepared by surface redox reaction. Appl. Catal. A Gen. 230(1–2), 19–30 (2002)

    CAS  Google Scholar 

  110. G. Jacobs, L. Williams, U. Graham, G.A. Thomas, D.E. Sparks, B.H. Davis, Low temperature water–gas shift: in situ DRIFTS-reaction study of ceria surface area on the evolution of formates on Pt/CeO2 fuel processing catalysts for fuel cell applications. Appl. Catal. A Gen. 252(1), 107–118 (2003)

    CAS  Google Scholar 

  111. R. Burch, Platinum-tin reforming catalysts: I. The oxidation state of tin and the interaction between platinum and tin. J. Catal. 71(2), 348–359 (1981)

    CAS  Google Scholar 

  112. R. Burch, L.C. Garla, Platinum-tin reforming catalysts. J. Catal. 71(2), 360–372 (1981)

    CAS  Google Scholar 

  113. T. Fujikawa, F.H. Ribeiro, G.A. Somorjai, The effect of Sn on the reactions ofn-Hexane and cyclohexane over polycrystalline Pt foils. J. Catal. 178(1), 58–65 (1998)

    CAS  Google Scholar 

  114. Y.-K. Park, F.H. Ribeiro, G.A. Somorjai, The effect of potassium and tin on the hydrogenation of ethylene and dehydrogenation of cyclohexane over Pt(111). J. Catal. 178(1), 66–75 (1998)

    CAS  Google Scholar 

  115. R.D. Cortright, J.A. Dumesic, Microcalorimetric, spectroscopic, and kinetic studies of silica supported Pt and Pt/Sn catalysts for isobutane dehydrogenation. J. Catal. 148(2), 771–778 (1994)

    CAS  Google Scholar 

  116. F. Epron, C. Carnevillier, P. Marécot, Catalytic properties in n-heptane reforming of Pt–Sn and Pt–Ir–Sn/Al2O3 catalysts prepared by surface redox reaction. Appl. Catal. A Gen. 295(2), 157–169 (2005)

    CAS  Google Scholar 

  117. G.W. Huber, J.W. Shabaker, J.A. Dumesic, Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300(5628), 2075–2077 (2003)

    CAS  Google Scholar 

  118. R.D. Cortright, J.M. Hill, J.A. Dumesic, Selective dehydrogenation of isobutane over supported Pt/Sn catalysts. Catal. Today 55(3), 213–223 (2000)

    CAS  Google Scholar 

  119. S. Hermans, R. Raja, J.M. Thomas, B.F.G. Johnson, G. Sankar, D. Gleeson, Solvent-free, low-temperature, selective hydrogenation of polyenes using a bimetallic nanoparticle Ru–Sn catalyst. Angew. Chem. Int. Ed. 40(7), 1211–1215 (2001)

    CAS  Google Scholar 

  120. B.F.G. Johnson, S.A. Raynor, D.B. Brown, D.S. Shephard, T. Mashmeyer, J.M. Thomas, S. Hermans, R. Raja, G. Sankar, New catalysts for clean technology. J. Mol. Catal. A Chem. 182–183, 89–97 (2002)

    Google Scholar 

  121. D. Dumitriu, R. Bârjega, L. Frunza, D. Macovei, T. Hu, Y. Xie, V.I. Pârvulescu, S. Kaliaguine, BiOx clusters occluded in a ZSM-5 matrix: preparation, characterization, and catalytic behavior in liquid-phase oxidation of hydrocarbons. J. Catal. 219(2), 337–351 (2003)

    CAS  Google Scholar 

  122. G. Qian, D. Ji, G. Lu, R. Zhao, Y. Qi, J. Suo, Bismuth-containing MCM-41: synthesis, characterization, and catalytic behavior in liquid-phase oxidation of cyclohexane. J. Catal. 232(2), 378–385 (2005)

    CAS  Google Scholar 

  123. R.K. Grasselli, Selective oxidation and ammoxidation of olefins by heterogeneous catalysis. J. Chem. Educ. 63(3), 216 (1986)

    CAS  Google Scholar 

  124. R. Raja, R.D. Adams, D.A. Blom, W.C. Pearl, E. Gianotti, J.M. Thomas, New catalytic liquid-phase ammoxidation approach to the preparation of niacin (vitamin B3). Langmuir 25(13), 7200–7204 (2009)

    CAS  Google Scholar 

  125. R.D. Adams, M. Chen, G. Elpitiya, M.E. Potter, R. Raja, Iridium–bismuth cluster complexes yield bimetallic nano-catalysts for the direct oxidation of 3-picoline to niacin. ACS Catal. 3(12), 3106–3110 (2013)

    CAS  Google Scholar 

  126. B. Li, H. Zhang, L. Huynh, C. Diverchy, S. Hermans, M. Devillers, E.V. Dikarev, Bismuth–palladium heterometallic carboxylate as a single-source precursor for the carbon-supported Pd–Bi/C catalysts. Inorg. Chem. 48(13), 6152–6158 (2009)

    CAS  Google Scholar 

  127. M. Guidotti, V.D. Santo, A. Gallo, E. Gianotti, G. Peli, R. Psaro, L. Sordelli, Catalytic dehydrogenation of propane over cluster-derived Ir–Sn/SiO2 catalysts. Catal. Lett. 112(1–2), 89–95 (2006)

    CAS  Google Scholar 

  128. J.W. Shabaker, D.A. Simonetti, R.D. Cortright, J.A. Dumesic, Sn-modified Ni catalysts for aqueous-phase reforming: characterization and deactivation studies. J. Catal. 231(1), 67–76 (2005)

    CAS  Google Scholar 

  129. F.M. Dautzenberg, J.N. Helle, P. Biloen, W.M.H. Sachtler, Conversion of n-hexane over monofunctional supported and unsupported PtSn catalysts. J. Catal. 63(1), 119–128 (1980)

    CAS  Google Scholar 

  130. P. Biloen, J.N. Helle, H. Verbeek, F.M. Dautzenberg, W.M.H. Sachtler, The role of rhenium and sulfur in platinum-based hydrocarbon-conversion catalysts. J. Catal. 63(1), 112–118 (1980)

    CAS  Google Scholar 

  131. A.B. Goel, P.E. Throckmorton, R.A. Grimm, Homogeneous palladium catalyzed oxidations: a novel, highly effective bimetallic palladium lead acetate complex useful in benzylic acyloxylation of alkyl aromatics. Inorg. Chim. Acta 117(1), L15–L17 (1986)

    CAS  Google Scholar 

  132. M.S. Holt, W.L. Wilson, J.H. Nelson, Transition metal-tin chemistry. Chem. Rev. 89(1), 11–49 (1989)

    CAS  Google Scholar 

  133. R.D. Adams, D.A. Blom, B. Captain, R. Raja, J.M. Thomas, E. Trufan, Toward less dependence on platinum group metal catalysts: the merits of utilizing tin. Langmuir 24(17), 9223–9226 (2008)

    CAS  Google Scholar 

Download references

Acknowledgement

The technical support from the Departments of Chemistry at Texas A&M University and Washington State University were duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Kan, Y., Zhang, Q. (2017). Transition Metal Complexes for Hydrogen Activation. In: Chen, YP., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53514-1_2

Download citation

Publish with us

Policies and ethics