Skip to main content

Ausdauer und Ausdauertraining im Sport

Anwendungsbereiche, Diagnostik, Trainingsformen, Organisation, Methoden, Anpassungen

  • Living reference work entry
  • First Online:
Bewegung, Training, Leistung und Gesundheit
  • 4676 Accesses

Zusammenfassung

Die Ausdauerleistungsfähigkeit bezeichnet die Fähigkeit, körperliche Belastungen über einen längeren Zeitraum aufrechtzuerhalten bzw. die Ermüdung hinauszuzögern. Sie ist im Wesentlichen durch die Kapazität des Herz-Kreislauf-Systems und Stoffwechsels determiniert. Eine Ausdauerleistungsdiagnostik ist indiziert, wenn eine generelle Bestimmung des aktuellen Leistungsniveaus erforderlich ist, mit dem Ziel die maximale Kapazität von Herz-Kreislauf-System und/oder Stoffwechsel zu beurteilen. Bei der Auswahl geeigneter Testverfahren sollten Sicherheitsüberlegungen, mögliche Kontraindikationen, eine für den gegebenen Zweck ausreichende Standardisierung und die Einhaltung wissenschaftlicher Testgütekriterien berücksichtigt werden. Zur Verbesserung der Ausdauerleistungsfähigkeit existiert eine Reihe von Trainingsmethoden. Die Auswahl der geeigneten Trainingsmethode hängt vom Leistungsniveau, vom Trainingshintergrund sowie – zumindest teilweise – von individuellen Präferenzen der einzelnen Person ab.

Dieser Beitrag ist Teil der Sektion Sportmotorische Fähigkeiten und sportliches Training, herausgegeben vom Teilherausgeber Michael Fröhlich, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Abbiss, C. R., Peiffer, J. J., Meeusen, R., & Skorski, S. (2015). Role of ratings of perceived exertion during self-paced exercise: What are we actually measuring? Sports Medicine, 45, 1235–1243.

    Article  Google Scholar 

  • ACSM. (2010). ACSM´s guidelines for exercise testing and prescription (8. Aufl.). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Astrand, P. O., & Ryhming, I. (1954). A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. Journal of Applied Physiology, 7, 218–221.

    Article  CAS  Google Scholar 

  • Bangsbo, J., Iaia, F. M., & Krustrup, P. (2008). The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Medicine, 38, 37–51.

    Article  Google Scholar 

  • Bassett, D. R., Jr., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32, 70–84.

    Article  Google Scholar 

  • Bautmans, I., Lambert, M., & Mets, T. (2004). The six-minute walk test in community dwelling elderly: Influence of health status. BMC Geriatrics, 4, 6.

    Article  Google Scholar 

  • Beattie, K., Kenny, I. C., Lyons, M., & Carson, B. P. (2014). The effect of strength training on performance in endurance athletes. Sports Medicine, 44, 845–865.

    Article  Google Scholar 

  • Beneke, R., Leithauser, R. M., & Ochentel, O. (2011). Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance, 6, 8–24.

    Article  Google Scholar 

  • Bishop, D., Jenkins, D. G., & Mackinnon, L. T. (1998). The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Medicine and Science in Sports and Exercise, 30, 1270–1275.

    Article  CAS  Google Scholar 

  • Boreham, C. A., Paliczka, V. J., & Nichols, A. K. (1990). A comparison of the PWC170 and 20-MST tests of aerobic fitness in adolescent schoolchildren. The Journal of Sports Medicine and Physical Fitness, 30, 19–23.

    CAS  PubMed  Google Scholar 

  • Borg, G., & Noble, B. (1974). Perceived exertion. Exercise and Sports Sciences Reviews, 2, 131–153.

    CAS  Google Scholar 

  • Bös, K., Opper, E., Woll, A., Liebisch, R., Breithecker, D., & Kremer, B. (2001). Das Karlsruher Testsystem für Kinder (KATS-K) – Testmanual. Haltung und Bewegung, 21, 4–66.

    Google Scholar 

  • Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., et al. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586, 151–160.

    Article  CAS  Google Scholar 

  • Castagna, C., Manzi, V., Impellizzeri, F., Weston, M., & Barbero Alvarez, J. C. (2010). Relationship between endurance field tests and match performance in young soccer players. Journal of Strength and Conditioning Research, 24, 3227–3233.

    Article  Google Scholar 

  • Cooper, K. H. (1968). A means of assessing maximal oxygen intake. Correlation between field and treadmill testing. JAMA, 203, 201–204.

    Article  CAS  Google Scholar 

  • Coquart, J. B., Garcin, M., Parfitt, G., Tourny-Chollet, C., & Eston, R. G. (2014). Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sports Medicine, 44, 563–578.

    Article  Google Scholar 

  • Coyle, E. F. (1995). Integration of the physiological factors determining endurance performance ability. Exercise and Sport Sciences Reviews, 23, 25–63.

    Article  CAS  Google Scholar 

  • Currell, K., & Jeukendrup, A. E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine, 38, 297–316.

    Article  Google Scholar 

  • Cutsem, J. van, Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., & Roelands, B. 2017. The effects of mental fatigue on physical performance: A systematic review. Sports Medicine 47, 1569–1588.

    Article  Google Scholar 

  • Donath, L., Zahner, L., Cordes, M., Hanssen, H., Schmidt-Trucksass, A., & Faude, O. (2013). Recommendations for aerobic endurance training based on subjective ratings of perceived exertion in healthy seniors. Journal of Aging and Physical Activity, 21, 100–111.

    Article  Google Scholar 

  • Faude, O., & Meyer, T. (2008). Methodische Aspekte der Laktatbestimmung [Methodological Aspects of Lactate Determination]. Deutsche Zeitschrift fur Sportmedizin, 59, 305–308.

    CAS  Google Scholar 

  • Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39, 469–490.

    Article  Google Scholar 

  • Faude, O., Schlumberger, A., Fritsche, T., Treff, G., & Meyer, T. (2010). Leistungsdiagnostische Testverfahren im Fußball – methodische Standards. [Performance Diagnosis in Football – Methodological Standards]. Deutsche Zeitschrift fur Sportmedizin, 61, 129–133.

    Google Scholar 

  • Faude, O., Hecksteden, A., Hammes, D., Schumacher, F., Besenius, E., Sperlich, B., et al. (2017). Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Applied Physiology, Nutrition, and Metabolism, 42, 142–147.

    Article  CAS  Google Scholar 

  • Fünten, K. aus der, Faude, O., Hecksteden, A., Such, U., Hornberger, W., & Meyer, T. (2013a). Anatomie und Physiologie von Körper und Bewegung. In A. Güllich & M. Krüger (Hrsg.), Sport – Das Lehrbuch für das Sportstudium (S. 67–122). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Fünten, K. aus der, Faude, O., Skorski, S., & Meyer, T. (2013b). Sportmedizin. In A. Güllich & M. Krüger (Hrsg.), Sport – Das Lehrbuch für das Sportstudium (S. 171–210). Berlin/Heidelberg: Springer.

    Google Scholar 

  • George, J. D., Vehrs, P. R., Allsen, P. E., Fellingham, G. W., & Fisher, A. G. (1993). VO2max estimation from a submaximal 1-mile track jog for fit college-age individuals. Medicine and Science in Sports and Exercise, 25, 401–406.

    CAS  PubMed  Google Scholar 

  • George, J. D., Fellingham, G. W., & Fisher, A. G. (1998). A modified version of the Rockport Fitness Walking Test for college men and women. Research Quarterly for Exercise and Sport, 69, 205–209.

    Article  CAS  Google Scholar 

  • Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., et al. (2006). Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. The Journal of Physiology, 575, 901–911.

    Article  CAS  Google Scholar 

  • Hawley, J. A., & Noakes, T. D. (1992). Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. European Journal of Applied Physiology, 65, 79–83.

    Article  CAS  Google Scholar 

  • Helgerud, J., Engen, L. C., Wisloff, U., & Hoff, J. (2001). Aerobic endurance training improves soccer performance. Medicine and Science in Sports and Exercise, 33, 1925–1931.

    Article  CAS  Google Scholar 

  • Helgerud, J., Hoydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., et al. (2007). Aerobic high-intensity intervals improve VO2max more than moderate training. Medicine and Science in Sports and Exercise, 39, 665–671.

    Article  Google Scholar 

  • Helgerud, J., Karlsen, T., Kim, W. Y., Hoydal, K. L., Stoylen, A., Pedersen, H., et al. (2011). Interval and strength training in CAD patients. International Journal of Sports Medicine, 32, 54–59.

    Article  CAS  Google Scholar 

  • Hoff, J., & Helgerud, J. (2004). Endurance and strength training for soccer players: Physiological considerations. Sports Medicine, 34, 165–180.

    Article  Google Scholar 

  • Hottenrott, K., & Hoos, O. (2013). Sportmotorische Fähigkeiten und sportliche Leistungen – Trainingswissenschaft. In A. Güllich & M. Krüger (Hrsg.), Sport – Das Lehrbuch für das Sportstudium (S. 439–502). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Iaia, F. M., Rampinini, E., & Bangsbo, J. (2009). High-intensity training in football. International Journal of Sports Physiology and Performance, 4, 291–306.

    Article  Google Scholar 

  • Illi, S. K., Held, U., Frank, I., & Spengler, C. M. (2012). Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis. Sports Medicine, 42, 707–724.

    Article  Google Scholar 

  • Impellizzeri, F. M., Marcora, S. M., Castagna, C., Reilly, T., Sassi, A., Iaia, F. M., et al. (2006). Physiological and performance effects of generic versus specific aerobic training in soccer players. International Journal of Sports Medicine, 27, 483–492.

    Article  CAS  Google Scholar 

  • Jones, A. M. (2006). The physiology of the world record holder in the women´s marathon. Int J Sports Sci Coaching, 1, 101–116.

    Article  Google Scholar 

  • Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions. The Journal of Physiology, 586, 35–44.

    Article  CAS  Google Scholar 

  • Kindermann, W. (1987). Ergometrie-Empfehlungen für die ärztliche Praxis. Deutsche Zeitschrift fur Sportmedizin, 38, 244–268.

    Google Scholar 

  • Laursen, P. B. (2010). Training for intense exercise performance: High-intensity or high-volume training? Scandinavian Journal of Medicine & Science in Sports, 20(2), 1–10.

    Article  Google Scholar 

  • Leger, L. A., & Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict VO2 max. European Journal of Applied Physiology and Occupational Physiology, 49, 1–12.

    Article  CAS  Google Scholar 

  • Marcora, S. M., & Staiano, W. (2010). The limit to exercise tolerance in humans: Mind over muscle? European Journal of Applied Physiology, 109, 763–770.

    Article  Google Scholar 

  • McCormick, A., Meijen, C., & Marcora, S. (2015). Psychological determinants of whole-body endurance performance. Sports Medicine, 45, 997–1015.

    Article  Google Scholar 

  • Meyer, T., Lucia, A., Earnest, C. P., & Kindermann, W. (2005a). A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters--theory and application. International Journal of Sports Medicine, 26, 38–48.

    Article  Google Scholar 

  • Meyer, T., Scharhag, J., & Kindermann, W. (2005b). Peak oxygen uptake. Myth and truth about an internationally accepted reference value. Zeitschrift für Kardiologie, 94, 255–264.

    Article  CAS  Google Scholar 

  • Midgley, A. W., McNaughton, L. R., & Jones, A. M. (2007). Training to enhance the physiological determinants of long-distance running performance: Can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Medicine, 37, 857–880.

    Article  Google Scholar 

  • Noakes, T. D., Peltonen, J. E., & Rusko, H. K. (2001). Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. The Journal of Experimental Biology, 204, 3225–3234.

    CAS  PubMed  Google Scholar 

  • Noakes, T. D., St Clair Gibson, A., & Lambert, E. V. (2004). From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans. British Journal of Sports Medicine, 38, 511–514.

    Article  CAS  Google Scholar 

  • Noonan, V., & Dean, E. (2000). Submaximal exercise testing: Clinical application and interpretation. Physical Therapy, 80, 782–807.

    CAS  PubMed  Google Scholar 

  • Oja, P., Laukkanen, R., Pasanen, M., Tyry, T., & Vuori, I. (1991). A 2-km walking test for assessing the cardiorespiratory fitness of healthy adults. International Journal of Sports Medicine, 12, 356–362.

    Article  CAS  Google Scholar 

  • Paavolainen, L., Hakkinen, K., Hamalainen, I., Nummela, A., & Rusko, H. (1999). Explosive-strength training improves 5-km running time by improving running economy and muscle power. Journal of Applied Physiology (1985), 86, 1527–1533.

    Article  CAS  Google Scholar 

  • Pageaux, B. (2014). The psychobiological model of endurance performance: An effort-based decision-making theory to explain self-paced endurance performance. Sports Medicine, 44, 1319–1320.

    Article  Google Scholar 

  • Pageaux, B., & Lepers, R. (2016). Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Frontiers in Physiology, 7, 587.

    Article  Google Scholar 

  • Ramsbottom, R., Nute, M. G., & Williams, C. (1987). Determinants of five kilometre running performance in active men and women. British Journal of Sports Medicine, 21, 9–13.

    Article  CAS  Google Scholar 

  • Rasekaba, T., Lee, A. L., Naughton, M. T., Williams, T. J., & Holland, A. E. (2009). The six-minute walk test: A useful metric for the cardiopulmonary patient. Internal Medicine Journal, 39, 495–501.

    Article  CAS  Google Scholar 

  • Ribisl, P. M., & Kachadorian, W. A. (1969). Maximal oxygen intake prediction in young and middle-aged males. The Journal of Sports Medicine and Physical Fitness, 9, 17–22.

    CAS  PubMed  Google Scholar 

  • Rowland, T. W., Rambusch, J. M., Staab, J. S., Unnithan, V. B., & Siconolfi, S. F. (1993). Accuracy of physical working capacity (PWC170) in estimating aerobic fitness in children. The Journal of Sports Medicine and Physical Fitness, 33, 184–188.

    CAS  PubMed  Google Scholar 

  • Sartor, F., Vernillo, G., de Morree, H. M., Bonomi, A. G., La Torre, A., Kubis, H. P., et al. (2013). Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sports Medicine, 43, 865–873.

    Article  Google Scholar 

  • Scharhag-Rosenberger, F., Meyer, T., Walitzek, S., & Kindermann, W. (2009). Time course of changes in endurance capacity: A 1-yr training study. Medicine and Science in Sports and Exercise, 41, 1130–1137.

    Article  Google Scholar 

  • Scharhag-Rosenberger, F., Meyer, T., Gassler, N., Faude, O., & Kindermann, W. (2010). Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. Journal of Science and Medicine in Sport, 13, 74–79.

    Article  Google Scholar 

  • Seiler, K. S., & Kjerland, G. O. (2006). Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an „optimal“ distribution? Scandinavian Journal of Medicine & Science in Sports, 16, 49–56.

    Article  Google Scholar 

  • Shephard, R. J., Allen, C., Benade, A. J., Davies, C. T., Di Prampero, P. E., Hedman, R., et al. (1968). The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bulletin of the World Health Organization, 38, 757–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skorski, S., & Abbiss, C. R. (2017). The manipulation of pace within endurance sport. Frontiers in Physiology, 8, 102.

    PubMed  PubMed Central  Google Scholar 

  • Stevens, A. W., Olver, T. T., & Lemon, P. W. (2015). Incorporating sprint training with endurance training improves anaerobic capacity and 2,000-m Erg performance in trained oarsmen. Journal of Strength and Conditioning Research, 29, 22–28.

    Article  Google Scholar 

  • Stöggl, T., & Bjorklund, G. (2017). High intensity interval training leads to greater improvements in acute heart rate recovery and anaerobic power as high volume low intensity training. Frontiers in Physiology, 8, 562.

    Article  Google Scholar 

  • Stöggl, T., & Sperlich, B. (2014). Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in Physiology, 5, 33.

    Article  Google Scholar 

  • Stöggl, T., & Sperlich, B. (2015). The training intensity distribution among well-trained and elite endurance athletes. Frontiers in Physiology, 6, 295.

    Article  Google Scholar 

  • Tomkinson, G. R., Leger, L. A., Olds, T. S., & Cazorla, G. (2003). Secular trends in the performance of children and adolescents (1980-2000): an analysis of 55 studies of the 20m shuttle run test in 11 countries. Sports Medicine, 33, 285–300.

    Article  Google Scholar 

  • Tucker, R. (2009). The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. British Journal of Sports Medicine, 43, 392–400.

    Article  CAS  Google Scholar 

  • Ulmer, H. V. (1996). Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia, 52, 416–420.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Faude .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Faude, O., Donath, L. (2019). Ausdauer und Ausdauertraining im Sport. In: Güllich, A., Krüger, M. (eds) Bewegung, Training, Leistung und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53386-4_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53386-4_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53386-4

  • Online ISBN: 978-3-662-53386-4

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics