Skip to main content

Non-formulation Parameters That Affect Penetrant-Skin-Vehicle Interactions and Percutaneous Absorption

  • Chapter
  • First Online:
Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin

Abstract

An understanding of the factors that influence the percutaneous absorption of drugs, diagnostic agents and cosmetics is essential if the topical delivery route is to reach its full potential. Considerable progress has been made in the use of optimised formulations and advanced delivery systems, such as nanoparticulate carriers, to penetrate the skin barrier. However, in this chapter we will examine the more fundamental question of how a penetrant interacts with the skin barrier, and how the properties of the molecule and the skin can affect this. We firstly discuss the inherent physicochemical properties of a molecule and how these can be used to predict skin permeation rates and targeting to particular routes and sites. In addition to penetrant properties, skin properties determined by the degree of hydration, age, gender or body site also influence rates of percutaneous absorption. Other ways in which the skin barrier performance may be affected include prior skin treatments with cosmetics, depilatories, peeling agents or insect repellents, as well as burns and intrinsic defects. Finally, we discuss some ways in which the barrier function of the skin may be enhanced, in order to protect against unwanted penetration of irritants and toxic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron CK (2001) Organophosphates and carbamates. In: Clinical toxicology. WB Saunders Company, Philadelphia, pp 819–828

    Google Scholar 

  • Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB (2012) Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J Chem Inf Model 52(2):420–428

    Article  CAS  PubMed  Google Scholar 

  • Anane R, Bonini M, Creppy EE (1997) Transplacental passage of aluminium from pregnant mice to fetus organs after maternal transcutaneous exposure. Hum Exp Toxicol 16(9):501–504

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Kilshaw BH, Harkness RA, Kelly RW (1975) Spongioform myelinopathy in premature infants. Br Med J 2(5964):175–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anissimov YG, Roberts MS (2011) Modelling dermal drug distribution after topical application in human. Pharm Res 28(9):2119–2129

    Article  CAS  PubMed  Google Scholar 

  • Baker H, Kligman AM (1967) A simple in vivo method for studying the permeability of the human stratum corneum. J Invest Dermatol 48(3):273–274

    Article  CAS  PubMed  Google Scholar 

  • Barker N, Hadgraft J, Rutter N (1987) Skin permeability in the newborn. J Invest Dermatol 88(4):409–411

    Article  CAS  PubMed  Google Scholar 

  • Beastall J, Guy RH, Hadgraft J, Wilding I (1986) The influence of urea on percutaneous absorption. Pharm Res 3:294–297

    Article  CAS  PubMed  Google Scholar 

  • Behl CR, Flynn GL, Kurihara T, Smith W, Gatmaitan O, Higuchi WI, Ho NF, Pierson CL (1980) Permeability of thermally damaged skin: I. Immediate influences of 60 degrees C scalding on hairless mouse skin. J Invest Dermatol 75(4):340–345

    Article  CAS  PubMed  Google Scholar 

  • Behl CR, Flynn GL, Barrett M, Walters KA, Linn EE, Mohamed Z, Kurihara T, Ho NFH, Higuchi WI, Pierson CL (1981) Permeability of thermally damaged skin II: immediate influences of branding at 60 C on hairless mouse skin permeability. Burns 7(6):389–399

    Article  Google Scholar 

  • Benfeldt E, Serup J, Menne T (1999) Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br J Dermatol 140(4):739–748

    Article  CAS  PubMed  Google Scholar 

  • Berndt U, Wigger‐Alberti W, Gabard B, Elsner P (2000) Efficacy of a barrier cream and its vehicle as protective measures against occupational irritant contact dermatitis. Contact Dermatitis 42(2):77–80

    Article  CAS  PubMed  Google Scholar 

  • Bickers DR, Kappas A (1978) Human skin aryl hydrocarbon hydroxylase. Induction by coal tar. J Clin Invest 62(5):1061–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwstra JA, de Graaff A, Gooris GS, Nijsse J, Wiechers JW, van Aelst AC (2003) Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol 120(5):750–758

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Kaplan LM, Brown ME (1961) Phenol-induced histological skin changes: hazards, technique, and uses. Br J Plast Surg 13:158–169

    Article  Google Scholar 

  • Brunner M, Dehghanyar P, Seigfried B, Martin W, Menke G, Muller M (2005) Favourable dermal penetration of diclofenac after administration to the skin using a novel spray gel formulation. Br J Clin Pharmacol 60(5):573–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucks DA, Maibach H (2005) Occlusion does not uniformly enhance penetration in vivo. In: Bronaugh RL, Maibach H (eds) Percutaneous absorption. Marcel Dekker, New York, pp 65–83

    Chapter  Google Scholar 

  • Bullock BL (1996) Pathophysiology: adaptations and alterations in function. Williams and Wilkins, Lippincott

    Google Scholar 

  • Byl NN (1995) The use of ultrasound as an enhancer for transcutaneous drug delivery: phonophoresis. Phys Ther 75(6):539–553

    Article  CAS  PubMed  Google Scholar 

  • Caussin J, Groenink HW, de Graaff AM, Gooris GS, Wiechers JW, van Aelst AC, Bouwstra JA (2007) Lipophilic and hydrophilic moisturizers show different actions on human skin as revealed by cryo scanning electron microscopy. Exp Dermatol 16(11):891–898

    Article  CAS  PubMed  Google Scholar 

  • Cevc G, Mazgareanu S, Rother M, Vierl U (2008) Occlusion effect on transcutaneous NSAID delivery from conventional and carrier-based formulations. Int J Pharm 359(1–2):190–197

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Lian GP, Han LJ (2010) Modeling transdermal permeation. Part I. Predicting skin permeability of both hydrophobic and hydrophilic solutes. Am Inst Chem Eng J 56(5):1136–1146

    CAS  Google Scholar 

  • Chen LJ, Han LJ, Lian GP (2013) Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev 65(2):295–305

    Article  CAS  PubMed  Google Scholar 

  • Coomes MW, Norling AH, Pohl RJ, Muller D, Fouts JR (1983) Foreign compound metabolism by isolated skin cells from the hairless mouse. J Pharmacol Exp Ther 225(3):770–777

    CAS  PubMed  Google Scholar 

  • Cross SE, Roberts MS (1999) Defining a model to predict the distribution of topically applied growth factors and other solutes in excisional full-thickness wounds. J Invest Dermatol 112(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Cross SE, Anderson C, Roberts MS (1998) Topical penetration of commercial salicylate esters and salts using human isolated skin and clinical microdialysis studies. Br J Clin Pharmacol 46(1):29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross SE, Megwa SA, Benson HA, Roberts MS (1999) Self promotion of deep tissue penetration and distribution of methylsalicylate after topical application. Pharm Res 16(3):427–433

    Article  CAS  PubMed  Google Scholar 

  • Cross SE, Pugh WJ, Hadgraft J, Roberts MS (2001) Probing the effect of vehicles on topical delivery: understanding the basic relationship between solvent and solute penetration using silicone membranes. Pharm Res 18(7):999–1005

    Article  CAS  PubMed  Google Scholar 

  • Dancik Y, Jepps OG, Roberts MS (2008) Physiologically based pharmacokinetics and pharmacodynamics of skin. In: Roberts MS, Walters KA (eds) Dermal absorption and toxicity assessment, vol 177. Informa Healthcare, New York, pp 179–207

    Google Scholar 

  • Dancik Y, Thompson C, Krishnan G, Roberts MS (2010) Cutaneous metabolism and active transport in transdermal drug delivery. In: Monteiro-Riviere NA (ed) Toxicology of the skin. Informa Healthcare USA Inc., New York, pp 69–82

    Google Scholar 

  • Dancik Y, Anissimov YG, Jepps OG, Roberts MS (2012) Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application. Br J Clin Pharmacol 73(4):564–578

    Article  CAS  PubMed  Google Scholar 

  • Debboun M, Frances SP, Strickman DA (2006) Insect repellents: principles, methods, and uses. CRC Press, Boca Raton

    Book  Google Scholar 

  • Diez I, Colom H, Moreno J, Obach R, Peraire C, Domenech J (1991) A comparative in vitro study of transdermal absorption of a series of calcium channel antagonists. J Pharm Sci 80(10):931–934

    Article  CAS  PubMed  Google Scholar 

  • Du Plessis J, Pugh WJ, Judefeind A, Hadgraft J (2002) Physico-chemical determinants of dermal drug delivery: effects of the number and substitution pattern of polar groups. Eur J Pharm Sci 16(3):107–112

    Article  PubMed  Google Scholar 

  • Elias PM, Brown BE (1978) The mammalian cutaneous permeability barrier: defective barrier function is essential fatty acid deficiency correlates with abnormal intercellular lipid deposition. Lab Invest 39(6):574–583

    CAS  PubMed  Google Scholar 

  • Elias PM, Schmuth M (2009) Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol 9(5):437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erfan M, Moghimi HR, Haeri A, Jafarzadeh Kashi TS, Jafarzade F (2012). Poly (CPP-SA) anhydride as a reactive barrier matrix against percutaneous absorption of toxic chemicals, US Patent 20,120,237,471

    Google Scholar 

  • Essa EA, Bonner MC, Barry BW (2002) Human skin sandwich for assessing shunt route penetration during passive and iontophoretic drug and liposome delivery. J Pharm Pharmacol 54(11):1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Fatouros DG, Groenink HW, de Graaff AM, van Aelst AC, Koerten HK, Bouwstra JA (2006) Visualization studies of human skin in vitro/in vivo under the influence of an electrical field. Eur J Pharm Sci 29(2):160–170

    Article  CAS  PubMed  Google Scholar 

  • Feldmann RJ, Maibach HI (1967) Regional variation in percutaneous penetration of 14C cortisol in man. J Invest Dermatol 48(2):181–183

    Article  CAS  PubMed  Google Scholar 

  • Finnen MJ, Herdman ML, Shuster S (1984) Induction of drug metabolising enzymes in the skin by topical steroids. J Steroid Biochem 20(5):1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Fluhr JW, Pelosi A, Lazzerini S, Dikstein S, Berardesca E (2004) Differences in corneocyte surface area in pre-and post-menopausal women. Skin Pharmacol Physiol 14(Suppl 1):10–16

    Article  Google Scholar 

  • Flynn GL, Behl CR, Linn EE, Higuchi WI, Ho NFH, Pierson CL (1982) Permeability of thermally damaged skin v: permeability over the course of maturation of a deep partial-thickness wound. Burns 8(3):196–202

    Article  CAS  Google Scholar 

  • Frum Y, Bonner MC, Eccleston GM, Meidan VM (2007) The influence of drug partition coefficient on follicular penetration: in vitro human skin studies. Eur J Pharm Sci 30(3–4):280–287

    Article  CAS  PubMed  Google Scholar 

  • Giusti F, Martella A, Bertoni L, Seidenari S (2001) Skin barrier, hydration, and pH of the skin of infants under 2 years of age. Pediatr Dermatol 18(2):93–96

    Article  CAS  PubMed  Google Scholar 

  • Goddard DR, Michaelis L (1934) A study on keratin. J Biol Chem 106(2):605–614

    CAS  Google Scholar 

  • Grice JE, Ciotti S, Weiner N, Lockwood P, Cross SE, Roberts MS (2010) Relative uptake of minoxidil into appendages and stratum corneum and permeation through human skin in vitro. J Pharm Sci 99(2):712–718

    Article  CAS  PubMed  Google Scholar 

  • Grundmann-Kollmann M, Podda M, Brautigam L, Hardt-Weinelt K, Ludwig RJ, Geisslinger G, Kaufmann R, Tegeder I (2002) Spatial distribution of 8-methoxypsoralen penetration into human skin after systemic or topical administration. Br J Clin Pharmacol 54(5):535–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hachem JP, Wagberg F, Schmuth M, Crumrine D, Lissens W, Jayakumar A, Houben E, Mauro TM, Leonardsson G, Brattsand M, Egelrud T, Roseeuw D, Clayman GL, Feingold KR, Williams ML, Elias PM (2006) Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol 126(7):1609–1621

    Article  CAS  PubMed  Google Scholar 

  • Hadgraft J, Lane ME (2009) Transepidermal water loss and skin site: a hypothesis. Int J Pharm 373(1–2):1–3

    Article  CAS  PubMed  Google Scholar 

  • Hafeez F, Maibach H (2013) Occlusion effect on in vivo percutaneous penetration of chemicals in man and monkey: partition coefficient effects. Skin Pharmacol Physiol 26(2):85–91

    Article  CAS  PubMed  Google Scholar 

  • Han I, Kim M, Kim J (2004) Enhanced transfollicular delivery of adriamycin with a liposome and iontophoresis. Exp Dermatol 13(2):86–92

    Article  CAS  PubMed  Google Scholar 

  • Hewitt M, Cronin MT, Enoch SJ, Madden JC, Roberts DW, Dearden JC (2009) In silico prediction of aqueous solubility: the solubility challenge. J Chem Inf Model 49(11):2572–2587

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T (1960) Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Chem 11(2):85–97

    Google Scholar 

  • Hikima T, Maibach H (2006) Skin penetration flux and lag-time of steroids across hydrated and dehydrated human skin in vitro. Biol Pharm Bull 29(11):2270–2273

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand GG, Wickett RR (2008) Epidemiology of skin barrier function: host and environmental factors. In: Walters KA, Roberts MS (eds) Dermatologic, cosmeceutic, and cosmetic development: therapeutic and novel approaches. Informa Healthcare, New York, pp 129–156

    Google Scholar 

  • Hinz RS, Lorence CR, Hodson CD, Hansch C, Hall LL, Guy RH (1991) Percutaneous penetration of para-substituted phenols in vitro. Fundam Appl Toxicol 17(3):575–583

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss SAM (1998) Dermal metabolism. In: Roberts MS, Walters KA (eds) Dermal absorption and toxicity assessment. Marcel Dekker, New York, pp 43–101

    Google Scholar 

  • Hudson TJ (2006) Skin barrier function and allergic risk. Nat Genet 38(4):399–400

    Article  CAS  PubMed  Google Scholar 

  • Imhof PR, Vuillemin T, Gerardin A, Racine A, Muller P, Follath F (1984) Studies of the bioavailability of nitroglycerin from a transdermal therapeutic system (Nitroderm TTS). Eur J Clin Pharmacol 27(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Jackson DM (1953) The diagnosis of the depth of burning. Br J Surg 40(164):588–596

    Article  CAS  PubMed  Google Scholar 

  • Jacobi U, Kaiser M, Sterry W, Lademann J (2006) Kinetics of blood flow after topical application of benzyl nicotinate on different anatomic sites. Arch Dermatol Res 298(6):291–300

    Article  CAS  PubMed  Google Scholar 

  • Johnson JM, Taylor WF, Shepherd AP, Park MK (1984) Laser-Doppler measurement of skin blood flow: comparison with plethysmography. J Appl Physiol Respir Environ Exerc Physiol 56(3):798–803

    CAS  PubMed  Google Scholar 

  • Jokura Y, Ishikawa S, Tokuda H, Imokawa G (1995) Molecular analysis of elastic properties of the stratum corneum by solid-state 13C-Nuclear Magnetic Resonance spectroscopy. J Invest Dermatol 104(5):806–812

    Article  CAS  PubMed  Google Scholar 

  • Kalia YN, Nonato LB, Lund CH, Guy RH (1998) Development of skin barrier function in premature infants. J Invest Dermatol 111(2):320–326

    Article  CAS  PubMed  Google Scholar 

  • Kasting GB, Smith R, Cooper E (1987) Effect of lipid solubility and molecular size on percutaneous absorption. In: Shroot B, Schaefer H (eds) Pharmacology and the skin, vol 1. Karger, Basel, pp 138–153

    Google Scholar 

  • Kaushik D, Michniak-Kohn B (2010) Percutaneous penetration modifiers and formulation effects: thermal and spectral analyses. AAPS PharmSciTech 11(3):1068–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik D, Batheja P, Kilfoyle B, Rai V, Michniak-Kohn B (2008) Percutaneous permeation modifiers: enhancement versus retardation. Expert Opin Drug Deliv 5(5):517–529

    Article  CAS  PubMed  Google Scholar 

  • Kaushik D, Costache A, Michniak-Kohn B (2010) Percutaneous penetration modifiers and formulation effects. Int J Pharm 386(1–2):42–51

    Article  CAS  PubMed  Google Scholar 

  • Kezic S, Kemperman PM, Koster ES, de Jongh CM, Thio HB, Campbell LE, Irvine AD, McLean WH, Puppels GJ, Caspers PJ (2008) Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. J Invest Dermatol 128(8):2117–2119

    Article  CAS  PubMed  Google Scholar 

  • Kleesz P, Darlenski R, Fluhr JW (2012) Full-body skin mapping for six biophysical parameters: baseline values at 16 anatomical sites in 125 human subjects. Skin Pharmacol Physiol 25(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Kligman AM (1963) The uses of sebum. Br J Dermatol 75:307–319

    Article  CAS  PubMed  Google Scholar 

  • Kligman AM (1964) The biology of the stratum corneum. In: Montagna W, Lobitz WC (eds) The epidermis. Academic, New York, pp 387–433

    Chapter  Google Scholar 

  • Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A (2009) Follicular transport route – research progress and future perspectives. Eur J Pharm Biopharm 71(2):173–180

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Mizuno T, Sugimoto I (1988) Effects of penetration enhancers on percutaneous absorption of nifedipine Comparison between Deet and Azone. J Pharmacobiodyn 11(2):88

    Article  CAS  PubMed  Google Scholar 

  • Korinth G, Geh S, Schaller KH, Drexler H (2003) In vitro evaluation of the efficacy of skin barrier creams and protective gloves on percutaneous absorption of industrial solvents. Int Arch Occup Environ Health 76(5):382–386

    Article  CAS  PubMed  Google Scholar 

  • Kretsos K, Miller MA, Zamora-Estrada G, Kasting GB (2008) Partitioning, diffusivity and clearance of skin permeants in mammalian dermis. Int J Pharm 346(1–2):64–79

    Article  CAS  PubMed  Google Scholar 

  • Kuswahyuning R, Roberts MS (2014) Concentration dependency in nicotine skin penetration flux from aqueous solutions reflects vehicle induced changes in nicotine stratum corneum retention. Pharm Res 31(6):1501–1511

    Article  CAS  PubMed  Google Scholar 

  • Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, Weiß B, Schaefer UF, Lehr C-M, Wepf R, Sterry W (2007) Nanoparticles – an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 66(2):159–164

    Article  CAS  PubMed  Google Scholar 

  • Lademann J, Knorr F, Richter H, Blume-Peytavi U, Vogt A, Antoniou C, Sterry W, Patzelt A (2008) Hair follicles – an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charite -Universitatsmedizin Berlin, Germany. Skin Pharmacol Physiol 21(3):150–155

    Article  CAS  PubMed  Google Scholar 

  • Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F (2009) Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt 14(2):021014

    Article  PubMed  CAS  Google Scholar 

  • Lademann J, Richter H, Schanzer S, Knorr F, Meinke M, Sterry W, Patzelt A (2011) Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm 77(3):465–468

    Article  CAS  PubMed  Google Scholar 

  • Laden KSR (1967) Identification of a natural moisturising agent in skin. J Soc Cosmet Chem 18:351–361

    CAS  Google Scholar 

  • Lai PM, Roberts MS (1999) An analysis of solute structure-human epidermal transport relationships in epidermal iontophoresis using the ionic mobility: pore model. J Control Release 58(3):323–333

    Article  CAS  PubMed  Google Scholar 

  • Lau WM, Ng KW, Sakenyte K, Heard CM (2012) Distribution of esterase activity in porcine ear skin, and the effects of freezing and heat separation. Int J Pharm 433(1–2):10–15

    Article  CAS  PubMed  Google Scholar 

  • Lee JN, Jee SH, Chan CC, Lo W, Dong CY, Lin SJ (2008) The effects of depilatory agents as penetration enhancers on human stratum corneum structures. J Invest Dermatol 128(9):2240–2247

    Article  CAS  PubMed  Google Scholar 

  • Lee WR, Shen SC, Al-Suwayeh SA, Yang HH, Li YC, Fang JY (2013) Skin permeation of small-molecule drugs, macromolecules, and nanoparticles mediated by a fractional carbon dioxide laser: the role of hair follicles. Pharm Res 30(3):792–802

    Article  CAS  PubMed  Google Scholar 

  • Lian G, Chen L, Han L (2008) An evaluation of mathematical models for predicting skin permeability. J Pharm Sci 97(1):584–598

    Article  CAS  PubMed  Google Scholar 

  • Lien EJ, Tong GL (1973) Physicochemical properties and percutaneous absorption of drugs. J Soc Cosmet Chem 24(6):371–384

    CAS  Google Scholar 

  • Lien E, Koda RT, Tong GL (1971) Physicochemical properties, bioavailability of drugs – buccal and percutaneous absorptions. Drug Intelligence Clin Pharm 5(2):38–41

    CAS  Google Scholar 

  • Liu P, Higuchi WI, Song WQ, Kurihara-Bergstrom T, Good WR (1991) Quantitative evaluation of ethanol effects on diffusion and metabolism of beta-estradiol in hairless mouse skin. Pharm Res 8(7):865–872

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Grice JE, Lademann J, Otberg N, Trauer S, Patzelt A, Roberts MS (2011) Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man. Br J Clin Pharmacol 72(5):768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockley DJ, Howes D, Williams FM (2005) Cutaneous metabolism of glycol ethers. Arch Toxicol 79(3):160–168

    Article  CAS  PubMed  Google Scholar 

  • Loden M (1985) The in vitro hydrolysis of diisopropyl fluorophosphate during penetration through human full-thickness skin and isolated epidermis. J Invest Dermatol 85(4):335–339

    Article  CAS  PubMed  Google Scholar 

  • Loden M (2008) Skin barrier function: effects of moisturizers. In: Wiechers JW (ed) Skin Barrier: chemistry of skin delivery systems. Allured publishing corporation, Carol Stream, pp 105–115

    Google Scholar 

  • Luebberding S, Krueger N, Kerscher M (2013) Age-related changes in skin barrier function – quantitative evaluation of 150 female subjects. Int J Cosmet Sci 35(2):183–190

    Article  CAS  PubMed  Google Scholar 

  • Machado M, Salgado TM, Hadgraft J, Lane ME (2010a) The relationship between transepidermal water loss and skin permeability. Int J Pharm 384(1–2):73–77

    Article  CAS  PubMed  Google Scholar 

  • Machado M, Hadgraft J, Lane ME (2010b) Assessment of the variation of skin barrier function with anatomic site, age, gender and ethnicity. Int J Cosmet Sci 32(6):397–409

    Article  CAS  PubMed  Google Scholar 

  • Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Magnusson BM, Anissimov YG, Cross SE, Roberts MS (2004) Molecular size as the main determinant of solute maximum flux across the skin. J Invest Dermatol 122(4):993–999

    Article  CAS  PubMed  Google Scholar 

  • Magnusson BM, Cross SE, Winckle G, Roberts MS (2006) Percutaneous absorption of steroids: determination of in vitro permeability and tissue reservoir characteristics in human skin layers. Skin Pharmacol Physiol 19(6):336–342

    Article  CAS  PubMed  Google Scholar 

  • Maibach HI, Feldman RJ, Milby TH, Serat WF (1971) Regional variation in percutaneous penetration in man. Pesticides. Arch Environ Health 23(3):208–211

    Article  CAS  PubMed  Google Scholar 

  • Manafi A, Hashemlou A, Momeni P, Moghimi HR (2008) Enhancing drugs absorption through third-degree burn wound eschar. Burns 34(5):698–702

    Article  PubMed  Google Scholar 

  • Marrakchi S, Maibach HI (2007) Biophysical parameters of skin: map of human face, regional, and age-related differences. Contact Dermatitis 57(1):28–34

    Article  PubMed  Google Scholar 

  • McNeill SC, Potts RO, Francoeur ML (1992) Local enhanced topical delivery (LETD) of drugs: does it truly exist? Pharm Res 9(11):1422–1427

    Article  CAS  PubMed  Google Scholar 

  • Meidan VM, Bonner MC, Michniak BB (2005) Transfollicular drug delivery – is it a reality? Int J Pharm 306(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  • Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug permeation through human skin – theory and invitro experimental measurement. Am Inst Chem Eng J 21(5):985–996

    Article  CAS  Google Scholar 

  • Milewski M, Stinchcomb AL (2012) Estimation of maximum transdermal flux of nonionized xenobiotics from basic physicochemical determinants. Mol Pharm 9(7):2111–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitragotri S (2003) Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release 86(1):69–92

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Anissimov YG, Bunge AL, Frasch HF, Guy RH, Hadgraft J, Kasting GB, Lane ME, Roberts MS (2011) Mathematical models of skin permeability: an overview. Int J Pharm 418(1):115–129

    Article  CAS  PubMed  Google Scholar 

  • Moghimi HR, Manafi A (2009) The necessity for enhancing of drugs absorption through burn eschar. Burns 35(6):902–904

    Article  Google Scholar 

  • Moghimi HR, Shakerinejad A (1998). Retardation effects of β-cyclodextrin and polyethylene glycol on percutaneous absorption of nitroglycerin. 6th International Conference on Perspectives in Percutaneous Penetration, Leiden

    Google Scholar 

  • Moghimi HR, Makhmalzadeh BS, Manafi A (2009) Enhancement effect of terpenes on silver sulphadiazine permeation through third-degree burn eschar. Burns 35(8):1165–1170

    Article  PubMed  Google Scholar 

  • Moghimi HR, Varshochian R, Kobarfard F, Erfan M (2010) Reduction of percutaneous absorption of toxic chemicals by dendrimers. Cutan Ocul Toxicol 29(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Monafo WW, West MA (1990) Current treatment recommendations for topical burn therapy. Drugs 40(3):364–373

    Article  CAS  PubMed  Google Scholar 

  • Monteiro-Riviere NA, Inman AO, Riviere JE, McNeill SC, Francoeur ML (1993) Topical penetration of piroxicam is dependent on the distribution of the local cutaneous vasculature. Pharm Res 10(9):1326–1331

    Article  CAS  PubMed  Google Scholar 

  • Moritz AR, Henriques FC Jr (1947) Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23(5):695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moss GP, Wilkinson SC, Sun Y (2012) Mathematical modelling of percutaneous absorption. Curr Opin Colloid Interface Sci 17(3):166–172

    Article  CAS  Google Scholar 

  • Nakashima E, Noonan PK, Benet LZ (1987) Transdermal bioavailability and first-pass skin metabolism: a preliminary evaluation with nitroglycerin. J Pharmacokinet Biopharm 15(4):423–437

    Article  CAS  PubMed  Google Scholar 

  • Nitsche JM, Wang TF, Kasting GB (2006) A two-phase analysis of solute partitioning into the stratum corneum. J Pharm Sci 95(3):649–666

    Article  CAS  PubMed  Google Scholar 

  • O’Flaherty EJ (2000) Absorption, distribution, and elimination of toxic agents. In: Principles of toxicology: environmental and industrial applications, 2nd edn. Wiley, New York, pp 35–55

    Chapter  Google Scholar 

  • Ogiso T, Shiraki T, Okajima K, Tanino T, Iwaki M, Wada T (2002) Transfollicular drug delivery: penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J Drug Target 10(5):369–378

    Article  CAS  PubMed  Google Scholar 

  • Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J (2004) Variations of hair follicle size and distribution in different body sites. J Invest Dermatol 122(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee JW, Kim YC, Prausnitz MR (2008) The effect of heat on skin permeability. Int J Pharm 359(1):94–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patzelt A, Lademann J (2013) Drug delivery to hair follicles. Expert Opin Drug Deliv 10(6):787–797

    Article  CAS  PubMed  Google Scholar 

  • Patzelt A, Richter H, Knorr F, Schäfer U, Lehr C-M, Dähne L, Sterry W, Lademann J (2011) Selective follicular targeting by modification of the particle sizes. J Control Release 150(1):45–48

    Article  CAS  PubMed  Google Scholar 

  • Peck KD, Ghanem AH, Higuchi WI (1994) Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharm Res 11(9):1306–1314

    Article  CAS  PubMed  Google Scholar 

  • Pellanda C, Strub C, Figueiredo V, Rufli T, Imanidis G, Surber C (2007) Topical bioavailability of triamcinolone acetonide: effect of occlusion. Skin Pharmacol Physiol 20(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Pilgram GS, Engelsma-van PAM, Bouwstra JA, Koerten HK (1999) Electron diffraction provides new information on human stratum corneum lipid organization studied in relation to depth and temperature. J Invest Dermatol 113(3):403–409

    Article  CAS  PubMed  Google Scholar 

  • Plewig G, Marples RR (1970) Regional differences of cell sizes in the human stratum corneum. Part I. J Invest Dermatol 54(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9(5):663–669

    Article  CAS  PubMed  Google Scholar 

  • Prather RD, Tu TG, Rolf CN, Gorsline J (1993) Nicotine pharmacokinetics of Nicoderm®(nicotine transdermal system) in women and obese men compared with normal-sized men. J Clin Pharmacol 33(7):644–649

    Google Scholar 

  • Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Google Scholar 

  • Rabinowitz JL, Feldman ES, Weinberger A, Schumacher HR (1982) Comparative tissue absorption of oral 14C-aspirin and topical triethanolamine 14C-salicylate in human and canine knee joints. J Clin Pharmacol 22(1):42–48

    Article  CAS  PubMed  Google Scholar 

  • Reed JT, Ghadially R, Elias PM (1995) SKin type, but neither race nor gender, influence epidermal permeability barrier function. Arch Dermatol 131(10):1134–1138

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS (1991) Structure-permeability considerations in percutaneous absorption. In: Scott RC, Guy RH, Hadgraft J, Bodde HE (eds) Prediction of percutaneous penetration – methods, measurement and modelling, vol 2. IBC Technical Services Ltd, London, pp 210–228

    Google Scholar 

  • Roberts MS (2013) Solute-vehicle-skin interactions in percutaneous absorption: the principles and the people. Skin Pharmacol Physiol 26(4–6):356–370

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS, Walker M (1993) Water – the most natural penetration enhancer. In: Walters KA, Hadgraft J (eds) Skin penetration enhancement. Marcel Dekker, New York, pp 1–30

    Google Scholar 

  • Roberts MS, Anderson RA, Swarbrick J (1977) Permeability of human epidermis to phenolic compounds. J Pharm Pharmacol 29(11):677–683

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS, Favretto WA, Meyer A, Reckmann M, Wongseelashote T (1982) Topical bioavailability of methyl salicylate. Aust N Z J Med 12(3):303–305

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS, Pugh WJ, Hadgraft J (1996) Epidermal permeability: penetrant structure relationships. 2. The effect of h-bonding groups in penetrants on their diffusion through the stratum corneum. Int J Pharm 132(1–2):23–32

    Article  CAS  Google Scholar 

  • Roberts MS, Cross SE, Pellett MA (2002) Skin transport. In: Walters KA (ed) Dermatological and transdermal formulations. Marcel Dekker, Inc., New York, pp 89–196

    Google Scholar 

  • Roberts MS, Cross SE, Anissimov YG (2004) Factors affecting the formation of a skin reservoir for topically applied solutes. Skin Pharmacol Physiol 17(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS, Bouwstra J, Pirot F, Falson F (2008) Skin hydration-A key determinant in topical absorption. In: Walters KA, Roberts MS (eds) Dermatologic, cosmeceutic, and cosmetic development: therapeutic and novel approaches. Informa Healthcare, New York, pp 115–128

    Google Scholar 

  • Roskos KV, Guy RH (1989) Assessment of skin barrier function using transepidermal water loss: effect of age. Pharm Res 6(11):949–953

    Article  CAS  PubMed  Google Scholar 

  • Roskos KV, Maibach HI, Guy RH (1989) The effect of aging on percutaneous absorption in man. J Pharmacokinet Biopharm 17(6):617–630

    Article  CAS  PubMed  Google Scholar 

  • Rothman S (1943) The principles of percutaneous absorption. J Lab Clin Med 28:1305–1321

    CAS  Google Scholar 

  • Rougier A, Lotte C, Maibach HI (1987) In vivo percutaneous penetration of some organic compounds related to anatomic site in humans: predictive assessment by the stripping method. J Pharm Sci 76(6):451–454

    Article  CAS  PubMed  Google Scholar 

  • Rougier A, Lotte C, Corcuff P, Maibach HI (1988) Relationship between skin permeability and corneocyte size according to anatomic site, age, and sex in man. J Soc Cosmetic Chem 39(1):15–26

    Google Scholar 

  • Rougier A, Lotte C, Maibach HI (2005) In vivo relationship between percutaneous absorption and transdermal water loss. In: Bronaugh RL, Maibach HI (eds) Percutanous absorption. Taylor Francis, Boca Raton, pp 95–106

    Google Scholar 

  • Rushmer RF, Buettner KJ, Short JM, Odland GF (1966) The skin. Science 154(3747):343–348

    Article  CAS  PubMed  Google Scholar 

  • Samaras EG, Riviere JE, Ghafourian T (2012) The effect of formulations and experimental conditions on in vitro human skin permeation-data from updated EDETOX database. Int J Pharm 434(1–2):280–291

    Article  CAS  PubMed  Google Scholar 

  • Schaefer H, Redelmeier TE (1996) Skin barrier. Principles of percutaneous absorption. S. Karger AG, Basel

    Google Scholar 

  • Scheuplein RJ (2013) A personal view of skin permeation (1960–2013). Skin Pharmacol Physiol 26(4–6):199–212

    Article  CAS  PubMed  Google Scholar 

  • Scheuplein RJ, Blank IH (1971) Permeability of the skin. Physiol Rev 51(4):702–747

    CAS  PubMed  Google Scholar 

  • Seidenari S, Giusti G (1995) Objective assessment of the skin of children affected by atopic dermatitis: a study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Derm Venereol 75(6):429–433

    CAS  PubMed  Google Scholar 

  • Shiozuka M, Wagatsuma A, Kawamoto T, Sasaki H, Shimada K, Takahashi Y, Nonomura Y, Matsuda R (2010) Transdermal delivery of a readthrough-inducing drug: a new approach of gentamicin administration for the treatment of nonsense mutation-mediated disorders. J Biochem 147(4):463–470

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Roberts MS (1996) Local deep tissue penetration of compounds after dermal application: structure-tissue penetration relationships. J Pharmacol Exp Ther 279(2):908–917

    CAS  PubMed  Google Scholar 

  • Sloan KB, Wasdo SC, Rautio J (2006) Design for optimized topical delivery: prodrugs and a paradigm change. Pharm Res 23(12):2729–2747

    Article  CAS  PubMed  Google Scholar 

  • Somani SM, Romano JA Jr (2000) Chemical warfare agents: toxicity at low levels. CRC Press, Boca Raton

    Book  Google Scholar 

  • Song JY, Kang HA, Kim MY, Park YM, Kim HO (2004) Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion. Dermatol Surg 30(3):390–394

    PubMed  Google Scholar 

  • Tan G, Xu P, Lawson LB, He J, Freytag LC, Clements JD, John VT (2010) Hydration effects on skin microstructure as probed by high-resolution cryo-scanning electron microscopy and mechanistic implications to enhanced transcutaneous delivery of biomacromolecules. J Pharm Sci 99(2):730–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Mitragotri S, Blankschtein D, Langer R (2001) Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis. J Pharm Sci 90(5):545–568

    Article  CAS  PubMed  Google Scholar 

  • Taylor LJ, Lee RS, Long M, Rawlings AV, Tubek J, Whitehead L, Moss GP (2002) Effect of occlusion on the percutaneous penetration of linoleic acid and glycerol. Int J Pharm 249(1–2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Tezel A, Sens A, Mitragotri S (2002) A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density. Pharm Res 19(12):1841–1846

    Article  CAS  PubMed  Google Scholar 

  • Trommer H, Neubert RH (2006) Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol 19(2):106–121

    Article  CAS  PubMed  Google Scholar 

  • Van Scott EJ, Yu RJ (1984) Hyperkeratinization, corneocyte cohesion, and alpha hydroxy acids. J Am Acad Dermatol 11(5):867–879

    Article  PubMed  Google Scholar 

  • Vergnanini AL, Aoki V, Takaoka R, Madi J (2010) Comparative effects of pimecrolimus cream vehicle and three commercially available moisturizers on skin hydration and transepidermal water loss. J Dermatolog Treat 21(3):126–129

    Article  CAS  PubMed  Google Scholar 

  • Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, Autran B, Sterry W, Blume-Peytavi U (2006) 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a + cells after transcutaneous application on human skin. J Invest Dermatol 126(6):1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Vyumvuhore R, Tfayli A, Duplan H, Delalleau A, Manfait M, Baillet-Guffroy A (2013) Effects of atmospheric relative humidity on Stratum Corneum structure at the molecular level: ex vivo Raman spectroscopy analysis. Analyst 138(14):4103–4111

    Article  CAS  PubMed  Google Scholar 

  • Waller JM, Maibach HI (2005) Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 11(4):221–235

    Article  PubMed  Google Scholar 

  • Wang TF, Kasting GB, Nitsche JM (2006) A multiphase microscopic diffusion model for stratum corneum permeability. I. Formulation, solution, and illustrative results for representative compounds. J Pharm Sci 95(3):620–648

    Article  CAS  PubMed  Google Scholar 

  • Wang TF, Kasting GB, Nitsche JM (2007) A multiphase microscopic diffusion model for stratum corneum permeability. II. Estimation of physicochemical parameters, and application to a large permeability database. J Pharm Sci 96(11):3024–3051

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Hayes MT, Kempf M, Cuttle L, Mill J, Kimble RM (2009) The poor penetration of topical burn agent through burn eschar on a porcine burn model. Burns 35(6):901–902

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chen L, Lian G, Han L (2010) Determination of partition and binding properties of solutes to stratum corneum. Int J Pharm 398(1–2):114–122

    Article  CAS  PubMed  Google Scholar 

  • Wester RC, Noonan PK, Smeach S, Kosobud L (1983) Pharmacokinetics and bioavailability of intravenous and topical nitroglycerin in the rhesus monkey: estimate of percutaneous first-pass metabolism. J Pharm Sci 72(7):745–748

    Article  CAS  PubMed  Google Scholar 

  • Wester RC, Maibach HI, Bucks DA, Aufrere MB (1984) In vivo percutaneous absorption of paraquat from hand, leg, and forearm of humans. J Toxicol Environ Health 14(5–6):759–762

    Article  CAS  PubMed  Google Scholar 

  • Wigger-Alberti W, Elsner P (1998) Do barrier creams and gloves prevent or provoke contact dermatitis? Am J Contact Dermatitis 9(2):100–106

    Article  CAS  PubMed  Google Scholar 

  • Windheuser JJ, Haslam JL, Caldwell L, Shaffer RD (1982) The use of N, N-diethyl-m-toluamide to enhance dermal and transdermal delivery of drugs. J Pharm Sci 71(11):1211–1213

    Article  CAS  PubMed  Google Scholar 

  • Wohlrab W (1984) The influence of urea on the penetration kinetics of topically applied corticosteroids. Acta Derm Venereol 64(3):233–238

    CAS  PubMed  Google Scholar 

  • Wohlrab W (1990) The influence of urea on the penetration kinetics of vitamin-A-acid into human skin. Z-Hautkr 65:803–805

    CAS  PubMed  Google Scholar 

  • Wurster DE, Kramer SF (1961) Investigation of some factors influencing percutaneous absorption. J Pharm Sci 50:288–293

    Article  CAS  PubMed  Google Scholar 

  • Yalkowsky SH, Valvani SC (1980) Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci 69(8):912–922

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Nakagawa A, Tsuji M, Noda K (1986) Skin permeability of various non-steroidal anti-inflammatory drugs in man. Life Sci 39(12):1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Ya-Xian Z, Suetake T, Tagami H (1999) Number of cell layers of the stratum corneum in normal skin – relationship to the anatomical location on the body, age, sex and physical parameters. Arch Dermatol Res 291(10):555–559

    Article  CAS  PubMed  Google Scholar 

  • Zadeh BS, Moghimi H, Santos P, Hadgraft J, Lane ME (2008) A comparative study of the in vitro permeation characteristic of sulphadiazine across synthetic membranes and eschar tissue. Int Wound J 5(5):633–638

    Article  PubMed  Google Scholar 

  • Zadeh BSM, Moghimi H, Santos P, Hadgraft J, Lane ME, Rahim F (2010) Formulation of microemulsion systems for improvement of nitrofurazone permeation through silicon membrane as burn wound imitating coverage. Int J Pharm 6:264–270

    Article  CAS  Google Scholar 

  • Zhang Q, Grice JE, Li P, Jepps OG, Wang GJ, Roberts MS (2009) Skin solubility determines maximum transepidermal flux for similar size molecules. Pharm Res 26(8):1974–1985

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Li P, Roberts MS (2011) Maximum transepidermal flux for similar size phenolic compounds is enhanced by solvent uptake into the skin. J Control Release 154(1):50–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks go to the National Health & Medical Research Council of Australia for financial support. The authors also thank Navin Chandrasekaran (Therapeutics Research Centre, School of Medicine, the University of Queensland) for help in drawing figures and Dr Amy Holmes, from (Therapeutics Research Centre, School of Pharmacy and Medical Sciences, University of South Australia), for assistance in editing the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grice, J.E. et al. (2017). Non-formulation Parameters That Affect Penetrant-Skin-Vehicle Interactions and Percutaneous Absorption. In: Dragicevic, N., I. Maibach, H. (eds) Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53270-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53270-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53268-3

  • Online ISBN: 978-3-662-53270-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics