Skip to main content

Position Automaton Construction for Regular Expressions with Intersection

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9840))

Included in the following conference series:

Abstract

Positions and derivatives are two essential notions in the conversion methods from regular expressions to equivalent finite automata. Partial derivative based methods have recently been extended to regular expressions with intersection. In this paper, we present a position automaton construction for those expressions. This construction generalizes the notion of position making it compatible with intersection. The resulting automaton is homogeneous and has the partial derivative automaton as its quotient.

This work was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(\ell (x)=\ell (y)\) implies that \(m=n\) and that \(\ell (x \cap _\mathcal{I}y)=\ell (x)=\ell (y)\).

References

  1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the state complexity of partial derivative automata for regular expressions with intersection. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 45–59. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41114-9_4

    Chapter  Google Scholar 

  3. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret. Comput. Sci. 48, 117–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Comput. Sci. 48, 197–213 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzozowski, J.: Derivatives of regular expressions. JACM 11(4), 481–494 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended regular expression. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Caron, P., Champarnaud, J., Mignot, L.: A general framework for the derivation of regular expressions. RAIRO - Theor. Inf. Appl. 48(3), 281–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoret. Comput. Sci. 233(1–2), 75–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite automaton constructions. Theoret. Comput. Sci. 289, 137–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, H., Yu, S.: Derivatives of regular expressions and an application. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS, vol. 7160, pp. 343–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and counting. Theor. Comput. Sci. 411(31–33), 2987–2998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison Wesley, Reading (1979)

    MATH  Google Scholar 

  14. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata. IEEE Trans. Elect. Comput. 9, 39–47 (1960)

    Article  MATH  Google Scholar 

  16. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Broda, S., Machiavelo, A., Moreira, N., Reis, R. (2016). Position Automaton Construction for Regular Expressions with Intersection. In: Brlek, S., Reutenauer, C. (eds) Developments in Language Theory. DLT 2016. Lecture Notes in Computer Science(), vol 9840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53132-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53132-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53131-0

  • Online ISBN: 978-3-662-53132-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics