Skip to main content

Zerstäuben von Flüssigkeiten mit Einstoff-Druckdüsen

  • Living reference work entry
  • First Online:
VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Ohnesorge, W.: Formation of drops by nozzles and the breakup of liquid jets. Appl. Math. Mech. 16, 355–358 (1936)

    Google Scholar 

  2. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Sauerländer, Aarau/Frankfurt am Main (1971)

    Google Scholar 

  3. Reitz, R.D.: Atomization and other breakup regimes of a liquid jet. PhD Thesis, Princeton University, Princeton (1978)

    Google Scholar 

  4. Rayleigh, F.: On the instability of jets. Proc. Lond. Math. Soc. 10, 4–13 (1878)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rayleigh, F.: On the capillary phenomena of Jets. Proc. Roy. Soc. 29, 71–97 (1879)

    Article  Google Scholar 

  6. Sterling, A.M., Sleicher, C.A.: The instability of capillary jets. J. Fluid Mech. 68, 477–495 (1975)

    Article  MATH  Google Scholar 

  7. R.D. Reitz, F.V. Bracco, Mechanisms of breakup of round liquid jets in Encyclopedia of Fluid Mechanics, Gulf Publishing Company (1986), P.O. Box 2608, Houston, Texas, 77001, U.S.A.

    Google Scholar 

  8. Yoon, S.S., Heister, S.D.: Categorizing linear theories for atomizing round jets. Atomization Sprays 13, 499–516 (2003)

    Article  Google Scholar 

  9. Lin, S.P., Reitz, R.D.: Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85–105 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chigier, N., Reitz, R.D.: Regimes of jet breakup mechanisms, Chapter 4. In: Kuo, K.K. (Hrsg.) Recent Advantages in Spray Combustion, Spray Atomization and Drop Burning Phenomena. AIAA, Reston (1995)

    Google Scholar 

  11. Sallam, K.A., Faeth, G.M.: Surface properties during primary breakup of turbulent liquid jets in still air. AIAA J. 41(8), 1514–1524 (2003)

    Article  Google Scholar 

  12. Dumouchel, C.: On the experimental investigation on primary atomization of liquid streams. Exp. Fluids 45, 371–422 (2008)

    Article  Google Scholar 

  13. Sallam, K.A., Dai, Z., Faeth, G.M.: Liquid breakup at the surface of turbulent round liquid jets in still gases. Int. J. Multiphase Flow 28, 427–449 (2002)

    Article  MATH  Google Scholar 

  14. Yi, Y., Reitz, R.D.: Modeling the primary breakup of sprays. Atomization Sprays 14, 53–80 (2004)

    Article  Google Scholar 

  15. Trinh, H.P., Chen, C.P.: Development of liquid jet atomization and breakup models including turbulence effects. Atomization Sprays 16, 907–932 (2006)

    Article  Google Scholar 

  16. Shinjo, J., Umemura, A.: Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Int. J. Multiphase Flow 36, 513–532 (2010)

    Article  Google Scholar 

  17. Movaghar, A., et al.: Numerical investigation of turbulent-jet primary breakup using one-dimensional turbulence. Int. J. Multiphase Flow 89, 241–254 (2017)

    Article  MathSciNet  Google Scholar 

  18. Lefebvre, A.H.: Atomization and Sprays. Taylor & Francis, Oxford (1988)

    Book  Google Scholar 

  19. Bayvel, L., Orzechowski, Z.: Liquid Atomization. Taylor Fancis, Washington, DC (1993). ISBN 0-89116-959-8

    Google Scholar 

  20. Walzel, P.: Auslegung von Einstoff-Druckdüsen. Chem.Ing.Tech. 54(4), 313–328 (1982)

    Article  Google Scholar 

  21. Walzel, P.: Zerstäuben von Flüssigkeiten. Chem.Ing.Tech. 62(12), 983–994 (1990)

    Article  Google Scholar 

  22. Troesch, H.A.: Die Zerstäubung von Flüssigkeiten. Chem.Ing.Tech. 26(6), 311–320 (1954)

    Article  Google Scholar 

  23. Albrecht, H.E., Borys, M., Damaschkle, N., Tropea, C.: The imaging properties of scattering particles in laser beams. Meas. Sci. Technol. 10(6), 564–574 (1999). ISSN 0957-0233

    Article  Google Scholar 

  24. Roisman, I.V., Tropea, C.: Flux measurement in sprays using Phase Doppler techniques. Atomization Sprays 11, 673–705 (2001)

    Google Scholar 

  25. Damaschke, N., Nobach, H., Tropea, C.: Optical limits of particle concentration for multi-dimensional particle sizing techniques in fluid mechanics. Exp. Fluids 32(2), 143–152 (2002). ISSN 0723-4864

    Article  Google Scholar 

  26. Nonn, T., Jaunet, V., Hellmann, S.: Spray Droplet Size Velocity Measurement Using Light-Field Velocimetry. ICLASS 2012, Heidelberg, Deutschland (2012)

    Google Scholar 

  27. Dumouchel, C., Blaisot, J.B., Ngo, V.D.: Representation of Laser Diffraction Diameter Distribution with a 3-Paramter Generalized Gamma Function. ICLASS 2012, Heidelberg (2012)

    Google Scholar 

  28. S. Middleman, Modeling Axisymmetric Flows, Academic Press Inc., A Division of Harcourt Brace & Company, 525 B Street, Suite 1900, San Diego, CA, U.S.A. (1995), ISBN 0-12-494950-9 Inzwischen auch erhältlich bei als e-Book ISBN 9780080536637

    Google Scholar 

  29. Walzel, P.: Advantages and Limits in Large Scale Modeling of Atomizers. ICLASS 1982, Madison (1982)

    Google Scholar 

  30. Harkins, W.D., Brown, F.E.: The determination of surface tension and the weight of falling drops. J. Am. Chem. Soc. 41, 499–524 (1919)

    Article  Google Scholar 

  31. Scheele, G.F., Meister, B.J.: Drop formation at low velocities in liquid-liquid systems. AIChE J. 14, 9–15 (1968)

    Article  Google Scholar 

  32. Walzel, P.: Koaleszenz von Flüssigkeitsstrahlen an Brausen. Chem.Ing.Tech. 52(8), 652–654 (1980)

    Article  Google Scholar 

  33. Weber, C.: Zum Zerfall eines Flüssigkeitsstrahles. Z. Angew. Math. Mech. 11, 136–154 (1931)

    Article  MATH  Google Scholar 

  34. Haehnlein, A.: Über den Zerfall eines Flüssigkeitsstrahles. Forschung auf dem Gebiet des Ingenieurwesens 2, 139–149 (1931)

    Article  Google Scholar 

  35. Brenn, G.: Die gesteuerte Sprayerzeugung für industrielle Anwendungen. Habilitationsschrift, Universität Erlangen-Nürnberg (1999)

    Google Scholar 

  36. Brandenberger, H.: Immobilisierung von Biokatalysatoren in monodisperse Alginatpartikel mittels Eindüsen- und Mehrdüsenanlage. Dissertation, ETH, Zürich (1999)

    Google Scholar 

  37. Eggers, J., Villermaux, E.: Physics of liquid jets. Rep. Prog. Phys. 71(3), 36601 (2008)

    Article  Google Scholar 

  38. Mason, B.J., Jayaratne, O.W., Woods, J.D.: An improved vibrating capillary device for producing uniform water droplets of 15 to 200 μm radius. J. Sci. Instrm. 40, 247–249 (1965)

    Article  Google Scholar 

  39. Tebel, K.H.: Monodisperse Tropfenerzeugung aus einem zwangsgestörten Freistrahl. Chem.Ing.Tech. 55(2), 160–161 (1983)., MS 1076/83

    Article  Google Scholar 

  40. Schröder, T.: Tropfenbildung an Gerinneströmungen im Schwere- und Zentrifugalfeld. Dissertation, University of Duisburg-Essen, VDI Forsch-Heft R 3, Nr. 503, VDI Verlag Düsseldorf (1997)

    Google Scholar 

  41. Schneider, S.: Erzeugung und Zerfall gedehnter Flüssigkeitsstrahlen im Schwerefeld. Dissertation, TU Dortmund (2002)

    Google Scholar 

  42. Mescher, A.: Einfluss der Gasführung In Sprühtrocknern auf den Fadenzerfall an Rotationszerstäubern. Dissertation, TU Dortmund (2012)

    Google Scholar 

  43. Schneider, S., Walzel, P.: Disintegration of liquid jets under gravity. ILASS-Europe, Toulouse (1999)

    Google Scholar 

  44. Koch, M.: Beiträge zur Katalysatorverkapselung im Sprühverfahren. Dissertation, TU Dortmund (2003)

    Google Scholar 

  45. Mescher, A., Möller, A., Dirks, M., Walzel, P.: Gravity affected break-up of laminar threads at low gas-relative-velocities. Chem. Eng. Sci. 69, 181–119 (2012)

    Article  Google Scholar 

  46. Gramlich, S., Mescher, A., Piesche, M., Walzel, P.: Modellierung und experimentelle Untersuchung des gasinduzierten Zerfalls gedehnter Flüssigkeitsstrahlen im Erdschwerefeld. Chem.Ing.Tech. 83(3), 273–279 (2011)

    Article  Google Scholar 

  47. Gramlich, S.: Numerische und experimentelle Untersuchungen zum Zerfall feststoffbeladener Flüssigkeitsstrahlen im Zentrifugalfeld. Dissertation, Universität Stuttgart (2011)

    Google Scholar 

  48. Kalmbach, T.: Bewegung und Zerfall laminarer Suspensionsstrahlen im Zentrifugalfeld. Disseration, University of Stuttgart, Shaker, Aachen (2016)

    Google Scholar 

  49. Grassmann, P.: Physikalische Grundlagen der Verfahrenstechnik. Salle & Sauerländer, 3. Aufl. (1983)

    Google Scholar 

  50. Dahl, H.D.: Theoretische und experimentelle Untersuchungen mit Hohlkegeldüsen. Dissertation, University of Stuttgart . 3 Nr. 302, VDI Verlag Duesseldorf (1992)

    Google Scholar 

  51. Wu, P.K., Reitz, R.D., Bracco, F.V.: Measurement of drop size at the spray edge near the nozzle in atomizing liquid jets. Phys. Fluids 29(4), 941–951 (1986)

    Article  Google Scholar 

  52. Hiroyasu, H., Shimizu, M., Arai, M.: The Breakup of High Speed Jets in a High Pressure Gaseous Atmosphere. ICLASS-1982, Madison (1982)

    Google Scholar 

  53. Platzer, E., Sommerfeld, M.: Modeling oft the turbulent atomization of liquids and spray formation. In: Walzel, P., Tropea, C. (Hrsg.) Final Presentation of the DFG-research program, Atomization and Spray Processes, Proceedings. Shaker, Aachen . ISBN 3-8322-2570-6 (2004)

    Google Scholar 

  54. Sedarsky, D., Rahm, M., Falgout, Z., Linne, M.: Visualization of Low-Level Swirl Effects in Fuel Injection Sprays. ILASS-Europe, Bremen (2014)

    Google Scholar 

  55. Sher, E., Bar-Kohany, T., Rashkovan, A.: Flash-boiling atomization. Progr. Energy Combust. Sci. 34, 417–439 (2008)

    Article  Google Scholar 

  56. Monse, C.: Zur Strukturbildung von sprühgetrockneten Partikeln. Dissertation, TU Dortmund (2009)

    Google Scholar 

  57. Günther, A., Wirth, K-E.: Key Factors on Superheated Atomization. ILASS-Europe, Bremen (2014)

    Google Scholar 

  58. Mayer, W.O.: Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions. J. Propuls. Power 14(5), 835–884 (1998)

    Article  Google Scholar 

  59. Moshkovich, Y., Levy, Y., Sher, I., Sher, E.: Energy Aspects in Spray Formation by Homogenous Flash Boiling. ILASS-Europe, Valencia (2017)

    Google Scholar 

  60. Hayashi, T., Suzuki, M., Ikemoto, M.: Visualization of Internal Flow and Spray Formation with Real Size Diesel Nozzle. ICLASS 2012, Heidelberg (2012)

    Google Scholar 

  61. Payri, R., Gimeno, J., Viera J.P., Plazas, A.H.: Schlieren Visualization of Transient Vapor Penetration and Spreading Angle of a Prototype Diesel Direct-Acting Piezoelectric injector. ICLASS 2012, Heidelberg (2012)

    Google Scholar 

  62. Weber, D., Leick, Ph.: Structure and Velocity Field of Individual Plumes of Flashing Gasoline Direct Injection Sprays. ILASS-Europe, Bremen (2014)

    Google Scholar 

  63. Ashgriz, N.: Handbook of Atomization and Sprays. Springer, Heidelberg (2011)

    Book  Google Scholar 

  64. DIN 66145: Beuth Verlag, Berlin (1976)

    Google Scholar 

  65. Savart, F.: Memoire sur le choc d’une veine liquide lancee contre un plan circulaire. Ann. Chim. 54, 56–87 (1833)

    Google Scholar 

  66. Huang, J.C.P.: The break-up of axisymmetric liquid sheets. J. Fluid Mech. 43, 305–319 (1970)

    Article  Google Scholar 

  67. Fraser, R.P., Eisenklam, P., Dombrowski, N., und Hasson, D.: Drop formation from rapidly moving sheets. AIChE J. 8(5), 672–680 (1962)

    Article  Google Scholar 

  68. Taylor, T.: The dynamics of thin sheets of fluids, III-Disintegration of fluid sheets. Proc. Roy Soc. A. 253, 313–321 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  69. Squire, H.B.: Investigation of the Instability of a moving liquid film. Br. J. Appl. Phys. 4, 167–169 (1953)

    Article  Google Scholar 

  70. Hagerty, W., Shea, J.F.: A study oft the stability of thin sheets. J. Appl. Mech. 22, 509–514 (1955)

    Google Scholar 

  71. Dombrowski, N., Johns, W.R.: The aerodynamic instability and disintegration of viscous liquid sheets. Chem. Eng. Sci. 18(3), 203–214 (1963)

    Article  Google Scholar 

  72. Li, X., Tankin, R.S.: On the temporal instability of two-dimensional liquid sheets. J. Fluid Mech. 226, 425–443 (1991)

    Article  MATH  Google Scholar 

  73. Mehring, C.: Modeling thin films for spray application. In: Walzel, P., Tropea, C. (Hrsg.) Final Presentation of the DFG Research Program, Atomization and Spray Processes, Proceedings. Shaker Verlag, Aachen. ISBN 3-8322-2570-6 (2004)

    Google Scholar 

  74. Wilhelm, S.: Tropfenbildung an Lamellen und Filmen. Dissertation. VDI-Fortschrittsber., R 3, Nr. 312, VDI Verlag Duesseldorf und Dissertation, Universität Essen (1992)

    Google Scholar 

  75. Dombrowski, N., Wolfsohn, D.L.: The atomization of water by swirl spray pressure nozzles. Trans. Inst. Chem. Eng. 50, 258–269 (1972)

    Google Scholar 

  76. Walzel, P.: Spraying and atomizing of liquids. In: Ullmann’s Encyclopedia of Technical Chemistry B2. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  77. Walzel, P.: Zerstäuben von Flüssigkeiten-Stand der Technik und Ausblick. Chem.Ing.Tech. 80(9), 1415 (2008)

    Article  Google Scholar 

  78. Senecal, P.K., Schmidt, D.P., Nouar, I., Rutland, C.J., Reitz, R.D., Corradini, M.L.: Modeling high-speed viscous liquid sheet atomization. Int. J. Multiphase Flow 25(6–7), 1073–1097 (1999)

    Article  MATH  Google Scholar 

  79. Schmidt, D.P., Nouar, I., Senecal, P.K., Hoffmann, J., Rutl, C.J.: Pressure atomization in the near field, SAE paper 1999-01-0496 (1999)

    Google Scholar 

  80. Walzel, P., Broll, P.: Lamella Disintegration at Sheet Forming Nozzles, Estimates for Drop Sizes. ILASS-Europe, Zaragoza (2002)

    Google Scholar 

  81. Torres, D.J., Trujillo, M.F.: KIVA-4: an unstructured ALE-code for compressible gas flow with sprays. J. Comput. Phys. 219, 943–975 (2006)

    Article  MATH  Google Scholar 

  82. Gnirß, M., Heukelbach, K., Tropea, C.: Influence of nozzle flow on the atomization of liquid sheets and round jets. In: Walzel, P., Tropea, C. (Hrsg.) Final Presentation of the DFG-Research Program Atomization and Spray Processes, Proceedings. Shaker, Aachen . ISBN 3-8322-2570-6 (2004)

    Google Scholar 

  83. Han, Z., Reitz, R.D.: Turbulence modeling on internal combustion engines using RNG k-ɛ models. Combust. Sci. Technol. 106, 207–215 (1995)

    Article  Google Scholar 

  84. Brodkey, R.S.: ThePhenomena of Fluid Motions. Addison-Wesley, Reading (1969)

    Google Scholar 

  85. Hinze, J.O.: Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1(3), 289–295 (1955)

    Article  Google Scholar 

  86. Clift, R., Grace, J., Weber, M.E.: Bubbles, Drops, Particles. Dover Publications, New York (1978)

    Google Scholar 

  87. Faeth, G.M., Hsiang, L.P., Wu, P.K.: Structure and breakup properties of sprays. Int. J. Multiphase Flow 21, 99–127 (1995)

    Article  MATH  Google Scholar 

  88. Pilch, M., Erdmann, C.A.: Use of breakup time data and velocity data to predict the maximum size of stable fragments for accelerated induced breakup of a liquid drop. Int. J. Multiphase Flow 13, 741–757 (1987)

    Google Scholar 

  89. Schmelz, F., Walzel, P.: Breakup of liquid droplets in accelerated gas flows. Atomization Spays 13(4), 357–372 (2003)

    Article  Google Scholar 

  90. Schmelz, F.: Tropfenzerfall in beschleunigten Gasströmungen. Dissertation, TU Dortmund (2002)

    Google Scholar 

  91. Sazhin, S.: Droplets and Sprays. Springer, Heidelberg (2014)

    Book  Google Scholar 

  92. Tanner, F.X., Weisser, G.: Simulation of liquid jet atomization for fuel sprays by means of cascade drop breakup. SAE Techn. Paper Ser. 980808 (1998)

    Google Scholar 

  93. Orme, M.: Experiments on droplet collision, bounce, coalescence and disruption. Progr. Energy Combust. Sci. 23, 65–79 (1997)

    Article  Google Scholar 

  94. Post, S.L., Abraham, J.: Modeling the outcome of drop-drop collisions in Diesel sprays. Int. J. Multiphase Flow 28, 997–1019 (2002)

    Article  MATH  Google Scholar 

  95. Munnannur, A., Reitz, R.D.: A new predictive model for fragmenting and non-fragmenting binary droplet collisions. Int. J. Multiphase Flow 33, 873–896 (2007)

    Article  Google Scholar 

  96. Brenn, G., Kolobaric, V.: Satellite droplet formation by unstable binary drop collisions. Phys. Fluids 18 (2006). https://doi.org/10.1063/1.2225363

    Article  Google Scholar 

  97. Dahl, H.D., Trautmann, P.: Einfluss der Einlaufgeometrie auf das Betriebsverhalten von Hohlkegeldüsen. Chem.Ing.Tech. 65(8), 962–964 (1993)

    Article  Google Scholar 

  98. Dahl, H., Muschelknautz, E.: Zerstäubung von Flüssigkeiten und Suspensionen mit Hohlkegeldüsen. Chem.Ing.Tech. 64(10), 961–963 (1992)

    Article  Google Scholar 

  99. Broll, P.: Erfassung der Lamellenparameter an Hohlkegeldüsen. Dissertation, TU Dortmund (2006)

    Google Scholar 

  100. Tratnig, A.: Characteristics of sprays produced by pressure swirl atomizers. Dissertation, TU Graz (2009)

    Google Scholar 

  101. Löffler-Mang, M.: Düseninnenströmung, Tropfenentstehung und Tropfenausbreitung bei rücklaufgeregelten Drall-Druckzerstäubern. Dissertation, Universität Karlsruhe (1992)

    Google Scholar 

  102. Horvay, M.: Theoretische und experimentelle Untersuchungen über den Einfluss des inneren Strömungsfeldes auf die Zerstäubungseigenschaften von Drall-Druckzerstäubungsdüsen. Dissertation, Universität Karlsruhe (1985)

    Google Scholar 

  103. Dumouchel, C., Bloor, M.J.G., Dombrowski, N., Ingham, D.B., Ledoux, M.: Viscous Flow in a swirl atomizer. Chem. Eng. Sci. 48(1), 81–87 (1993)

    Article  Google Scholar 

  104. Taylor, G.: The mechanics of swirl atomizers. Int. Congr. Appl. Mechan. 3, 280–285 (1948)

    Google Scholar 

  105. Söhngen, E., Grigull, U.: Der Strahlwinkel von Brennstoff-Dralldüsen bei kontinuierlicher Einspritzung. Forsch auf dem Gebiet d. Ingenieurwesen 17(3), 77–82 (1951)

    Article  Google Scholar 

  106. Giffen, A., Muraszew, B.: The Atomization of Liquid Fuels. Chapman & Hall Ltd, London (1953)

    Google Scholar 

  107. Abramovich, G.N.: Angewandte Gasdynamik. VEB, Berlin (1958)

    Google Scholar 

  108. Musemic, E., Walzel, P.: Durchsatzverhalten von Hohlkegeldüsen. Chem.Ing.Tech. 83(3), 237–246 (2011)

    Article  Google Scholar 

  109. Musemic, E.: Experimentelle Untersuchungen zum Tropfenbildungsprozess an Hohlkegeldüsen. Dissertation, TU Dortmund (2013)

    Google Scholar 

  110. Wimmer, E., Brenn, G.: Viscous flow through the swirl chamber of a pressure-swirl atomizer. Int. J. Multiphase Flow 53, 100–113 (2013)

    Article  Google Scholar 

  111. Broll, P., Maatje, U., Walzel, P., von Lavante, E.: Experimental and Numerical Study on Swirl Pressure Atomizers. ILASS-Europe, Darmstadt (2000)

    Google Scholar 

  112. Nonnenmacher, S., Piesche, M.: Numerische Untersuchung der Strömungsverhältnisse im Inneren von Hohlkegeldüsen mit Leitapparat. Chem. Ing. Tech. 71(7), 688–692 (1999)

    Article  Google Scholar 

  113. Nonnenmacher, S., Piesche, M.: Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids. Chem. Eng. Sci. 55(19), 4339–4348 (2000)

    Article  Google Scholar 

  114. Mehring, C., Sirignano, W.A.: Nonlinear capillary wave distortion and disintegration of thin planar liquid sheets. J. Fluid Mech. 388, 69–113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  115. Mehring, C., Siringnano, W.A.: Nonlinear capillary waves on swirling axisymmetric free liquid films. Int. J. Multiphase Flow 27, 1707–1734 (2001)

    Article  MATH  Google Scholar 

  116. Glaser, H.W.: Das Zerstäuben von Suspensionen mit Ein- und Zweistoffdüsen. Dissertation, Universität Essen (1989)

    Google Scholar 

  117. Kamplade, J.: Untersuchung zum Sprühverhalten von Drall-Druckdüsen mit modifizierter Mündungsgeometrie. Dissertation, TU Dortmund (2017)

    Google Scholar 

  118. Dombrowski, N., Hasson, D., Ward, D.E.: Some aspects of liquid flow through fan jet nozzles. Chem. Eng. Sci. 12(1), 35–50 (1960)

    Article  Google Scholar 

  119. Mulhem, B., Khoja, G., Fritsching, U.: Breakup of Hollow Cone and Flat Sheet Suspension Lamellae from Pressure Atomizers. ICLASS 2006, Kyoto (2006)

    Google Scholar 

  120. Bautsch, C.: (2011) Zur Modellierung, Simulation und Optimierung von Rauchgasentschwefelungs-wäschern. Dissertation, TU Dortmund, & Hut München, 2012

    Google Scholar 

  121. Dombrowski, N., Hasson, D.: The flow characteristic of swirl spray pressure nozzles with low viscosity liquids. AIChE J. 15(4), 604–611 (1969)

    Article  Google Scholar 

  122. Dombrowski, N., Wolfssohn, D.L.: The Atomisation of water by swirl spray pressure nozzles. Trans. Inst. Chem. Eng. 50, 259–269 (1972)

    Google Scholar 

  123. Feggeler, D., Landwehr, F., Walzel, P., Weicert, F., Müller, H. Fibre Sensor Based Frequency Analysis of Surface Waves at Hollow Cone Nozzles. ILASS-Europe, Orleans (2005)

    Google Scholar 

  124. Kennedy, J.B.: High Weber number SMD correlations for pressure atomizers. J. Eng. Gas Turbines Power 108, 101–195 (1986)

    Article  Google Scholar 

  125. Walzel, P.: Turbulenter Zerfall von Flüssigkeitsstrahlen aus der Sicht der Ähnlichkeitstheorie. Chem.Ing.Tech. 52(6), 525–526 (1980)

    Article  Google Scholar 

  126. Walzel, P.: Tropfenverteilungen und Wirkungsgrad beim Zerstäuben von Flüssigkeiten mit einer Turbulenzdüse. Chem.Ing.Tech. 52(12), 985 (1980)

    Article  Google Scholar 

  127. Yule, A.J., Sharief, A.A., Jeong, J.R., Nasr, G.G., James, D.D.: The performance characteristics of solid-cone-spray pressure-swirl atomizers. Atomization Sprays 10, 627–646 (2000)

    Google Scholar 

  128. Walmsley, S.J., Watkins, A.P., Yule, A.J.: On the prediction and structures of wider angle full-cone liquid sprays. Atomization Sprays 11, 453–470 (2001)

    Article  Google Scholar 

  129. Kohnen, B.T., Pieloth, D., Musemic, E., Walzel, P.: Characterization of full cone nozzles. Atomization Sprays. 21, 317–325 (2011)

    Article  Google Scholar 

  130. Schwarzkopf, J.D., Shakal, J.S., Bounuccelli, C.: A New Method Minimizing Flux Errors Associated with PDA-Measurements in Dilute Region of Full Cone Pressure Nozzle Swirl Atomizers. ICLASS 2006, Kyoto (2006)

    Google Scholar 

  131. Rothe, P.H., Block, J.A.: Aerodynamic of liquid sprays. Int. J. Multiphase Flow 3, 263–272 (1977)

    Article  Google Scholar 

  132. Lee, S.Y., Tankin, R.S.: Study of liquid spray (water) in a non-condensable environment (air). Int. J. Heat Mass Transf. 27(3), 351–361 (1984)

    Article  Google Scholar 

  133. Lee, S.Y., Tankin, R.S.: Study of liquid spray (water) in a condensable environment (steam). Int. J. Heat Mass Transf. 27(3), 363–374 (1984)

    Article  Google Scholar 

  134. Walzel, P., Scislowski, J., Schaldach, G.: Expansion and Reformation of Conical Jets. ILASS-Europe, Bremen (2014)

    Google Scholar 

  135. Pieloth, D.: persönliche Mitteilung (2013)

    Google Scholar 

  136. Hinds, W.C.: Aerosol Technology, Properties Behavior and Measurements of Airborn Particles, 2. Aufl. Wiley, New York (1999)

    Google Scholar 

  137. Günther, R.: Verbrennung und Feuerung. Springer, Heidelberg (1974)

    Book  Google Scholar 

  138. Franco, F., Fukumoto, Y.: Mathematical Models for Turbulent Round Jets Based on „Ideal“ and Lossy Conservation of Mass and Energy. ILASS-Europe, Valencia (2017)

    Google Scholar 

  139. Gao, F., Fritsching, U.: Study of binary in flight melt drop collisions. Mat.-Wissenschaft u. Werkstofftechn. 41(7), 547–554 (2010)

    Article  Google Scholar 

  140. Pasternak, L., Sommerfeld, M.: Experimental Investigation of Size Effects in Colliding Droplet. ILASS-Europe, Valencia (2017)

    Google Scholar 

  141. Blei, S., Sommerfeld, M.: CFD in drying technology – spray dryer-simulation. In: Tsotsas, E., Mujumdar, A.S. (Hrsg.) Modern Drying Technology I. Wiley VCH, Weinheim (2007)

    Google Scholar 

  142. Sommerfeld M., Lain, S.: Numerical Analysis of Sprays with Advanced Collision Model. ILASS- Europe, Valencia (2017)

    Google Scholar 

  143. Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Progr. 48, 141–180 (1952)

    Google Scholar 

  144. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32, 1605–1618 (1989)

    Article  Google Scholar 

  145. Yarin, A.L., Brenn, G., Kastner, O., Tropea, C.: Drying of acoustically levitated droplets of liquid-solid suspensions: evaporation and crust formation. Phys. Fluids 14(7) (2002)

    Article  MATH  Google Scholar 

  146. Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge, UK (1999)

    Book  Google Scholar 

  147. Sazhin, S.: Droplets and Sprays. Springer, Heidelberg (2014)

    Book  Google Scholar 

  148. Joos, F.: Technische Verbrennung. Springer, Heidelberg (2006)

    Google Scholar 

  149. Masters, K.: Spray Drying Handbook, 3. Aufl. Wiley, New York/London (1979)

    Google Scholar 

  150. Yarin, A., Roisman, I.V., Tropea, C.: Collision Phenomena in Liquids and Solids. Cambridge University Press, Cambridge, UK (2017)

    Book  MATH  Google Scholar 

  151. Horacek, B., Kiger, K., Kim, J.: Single nozzle spray cooling heat transfer mechanisms. Int. J. Heat Mass Transf. 48(8), 1425–1438 (2005)

    Article  Google Scholar 

  152. Kim, J.: Spray cooling heat transfer: the state of the art. Int. J. Heat Fluid Flow 28(4), 753–767 (2007)

    Article  Google Scholar 

  153. Todorov, T.: Wärmeübergang bei der Sprühkühlung unter Berücksichtigung der Sprühstrahlparameter. Dissertation, TU Magdeburg (2007)

    Google Scholar 

  154. Batzdorf, S., et al.: Heat transfer during simultaneous impact of two drops onto a hot solid substrate. Int. J. Heat Mass Transf. (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.091

    Article  Google Scholar 

  155. Breitbach, J., Roisman, I.V., Tropea, C.: Heat transfer in the film boiling regime: single drop impact and spray. Int. J. Heat Mass Transf. 110(7), 34–42 (2017)

    Article  Google Scholar 

  156. Fritsching, U.: Process Spray-Functional Particles Produced in Spray Processes. Springer, Heidelberg (2016)

    Google Scholar 

  157. Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Group, New York (1993)

    MATH  Google Scholar 

  158. Wozniak, G.: Zerstäubungstechnik: Prinzipien, Verfahren, Geräte. Springer, Heidelberg (2013)

    Google Scholar 

  159. Nasr, G.G., Yule, A.J., Bendig, L.: Industrial Sprays and Atomization. Springer (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Walzel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Walzel, P. (2019). Zerstäuben von Flüssigkeiten mit Einstoff-Druckdüsen. In: Stephan, P., Mewes, D., Kabelac, S., Kind, M., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas . Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52991-1_95-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52991-1_95-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52991-1

  • Online ISBN: 978-3-662-52991-1

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics