Skip to main content

Investigation of Hypertension in Childhood

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

The rational investigation of hypertension requires careful attention in pediatric nephrology. Hypertensive children are more likely to suffer from a specific underlying disease than adults and are at greater risk of long-term target-organ damage, but should not be subjected to unnecessary diagnostic procedures. However, the investigation of pediatric hypertension poses numerous practical and scientific problems in three main areas: measuring blood pressure, defining hypertension and deciding about the extent of further investigations in the hypertensive patient. The changing cardiovascular physiology, pathology and body dimensions in childhood add complexity in each of these areas. This chapter deals first with the different techniques for measuring blood pressure with their respective advantages and pitfalls. Subsequently, the current definitions of hypertension are discussed, including the pediatric population distribution based approach to normal blood pressure ranges. For each method the availability and usefulness of normal values is presented. Finally, we give a guide to the initial and follow up investigation of the hypertensive child, with a discussion of established and novel diagnostic tests as well as markers of target organ damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABPM:

Ambulatory blood pressure monitoring

ACE:

Angiotensin converting enzyme

BHS:

British Hypertension Society

BMI:

Body mass index

BP:

Blood pressure

ESH:

European Society of Hypertension

IMT:

Intima media thickness

JNC:

Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure

LVH:

Left ventricular hypertrophy

MAP:

Mean arterial pressure

PRA:

Plasma renin activity

References

  1. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  CAS  PubMed  Google Scholar 

  2. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  CAS  PubMed  Google Scholar 

  3. National Clinical Guideline Centre (UK). Hypertension: the clinical management of primary hypertension in adults: update of clinical guidelines 18 and 34. London: Royal College of Physicians (UK); 2011.

    Google Scholar 

  4. Whitworth JA, World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21:1983–92.

    Article  PubMed  Google Scholar 

  5. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.

    Article  Google Scholar 

  6. Lurbe E, Cifkova R, Cruickshank JK, et al. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens. 2009;27:1719–42.

    Article  CAS  PubMed  Google Scholar 

  7. Gómez-Marín O, Prineas RJ, Råstam L. Cuff bladder width and blood pressure measurement in children and adolescents. J Hypertens. 1992;10:1235–41.

    Article  PubMed  Google Scholar 

  8. Canzanello VJ, Jensen PL, Schwartz GL. Are aneroid sphygmomanometers accurate in hospital and clinic settings? Arch Intern Med. 2001;161:729–31.

    Article  CAS  PubMed  Google Scholar 

  9. Bailey RH, Knaus VL, Bauer JH. Aneroid sphygmomanometers. An assessment of accuracy at a university hospital and clinics. Arch Intern Med. 1991;151:1409–12.

    Article  CAS  PubMed  Google Scholar 

  10. Yarows SA, Qian K. Accuracy of aneroid sphygmomanometers in clinical usage: University of Michigan experience. Blood Press Monit. 2001;6:101–6.

    Article  CAS  PubMed  Google Scholar 

  11. Hussain A, Cox JG. An audit of the use of sphygmomanometers. Br J Clin Pract. 1996;50:136–7.

    CAS  PubMed  Google Scholar 

  12. Update on the 1987 Task Force Report on High Blood Pressure in Children and Adolescents: a working group report from the National High Blood Pressure Education Program. National High Blood Pressure Education Program Working Group on Hypertension Control in Children and Adolescents. Pediatrics 1996;98:649–58.

    Google Scholar 

  13. Graves JW, Bailey KR, Grossardt BR, et al. The impact of observer and patient factors on the occurrence of digit preference for zero in blood pressure measurement in a hypertension specialty clinic: evidence for the need of continued observation. Am J Hypertens. 2006;19:567–72.

    Article  PubMed  Google Scholar 

  14. Nietert PJ, Wessell AM, Feifer C, Ornstein SM. Effect of terminal digit preference on blood pressure measurement and treatment in primary care. Am J Hypertens. 2006;19:147–52.

    Article  PubMed  Google Scholar 

  15. Wingfield D, Cooke J, Thijs L, et al. Terminal digit preference and single-number preference in the Syst-Eur trial: influence of quality control. Blood Press Monit. 2002;7:169–77.

    Article  PubMed  Google Scholar 

  16. Wright BM, Dore CF. A random-zero sphygmomanometer. Lancet. 1970;1:337–8.

    CAS  PubMed  Google Scholar 

  17. O’Brien E, Petrie J, Littler W, et al. The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J Hypertens. 1990;8:607–19.

    Article  PubMed  Google Scholar 

  18. ANSI/AAMI/ISO 81060-1:2007/(R)2013, Non-invasive sphygmomanometers – part 1: requirements and test methods for non-automated measurement type. Association for the Advancement of Medical Instrumentation, Arlington; 2013.

    Google Scholar 

  19. O’Brien E, Pickering T, Asmar R, et al. Working Group on Blood Pressure Monitoring of the European Society of Hypertension International Protocol for validation of blood pressure measuring devices in adults. Blood Press Monit. 2002;7:3–17.

    Article  PubMed  Google Scholar 

  20. Stergiou GS, Efstathiou SP, Argyraki CK, et al. Clinic, home and ambulatory pulse pressure: comparison and reproducibility. J Hypertens. 2002;20:1987–93.

    Article  CAS  PubMed  Google Scholar 

  21. Stergiou GS, Alamara CV, Salgami EV, et al. Reproducibility of home and ambulatory blood pressure in children and adolescents. Blood Press Monit. 2005;10:143–7.

    Article  PubMed  Google Scholar 

  22. Stabouli S, Kotsis V, Toumanidis S, et al. White-coat and masked hypertension in children: association with target-organ damage. Pediatr Nephrol. 2005;20:1151–5.

    Article  PubMed  Google Scholar 

  23. Hornsby JL, Mongan PF, Taylor AT, Treiber FA. “White coat” hypertension in children. J Fam Pract. 1991;33:617–23.

    CAS  PubMed  Google Scholar 

  24. Sorof JM, Portman RJ. White coat hypertension in children with elevated casual blood pressure. J Pediatr. 2000;137:493–7.

    Article  CAS  PubMed  Google Scholar 

  25. Matsuoka S, Kawamura K, Honda M, Awazu M. White coat effect and white coat hypertension in pediatric patients. Pediatr Nephrol. 2002;17:950–3.

    Article  PubMed  Google Scholar 

  26. 1999 World Health Organization-International Society of Hypertension guidelines for the management of hypertension. Guidelines Subcommittee. J Hypertens 1999;17:151–83.

    Google Scholar 

  27. Vollmer WM, Appel LJ, Svetkey LP, et al. Comparing office-based and ambulatory blood pressure monitoring in clinical trials. J Hum Hypertens. 2005;19:77–82.

    Article  CAS  PubMed  Google Scholar 

  28. Agarwal R. Andersen MJPrognostic importance of clinic and home blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006;69:406–11.

    Article  CAS  PubMed  Google Scholar 

  29. Staessen JA, Den Hond E, Celis H, et al. Antihypertensive treatment based on blood pressure measurement at home or in the physician’s office: a randomized controlled trial. JAMA. 2004;291:955–64.

    Article  CAS  PubMed  Google Scholar 

  30. Wühl E, Hadtstein C, Mehls O, Schaefer F. Home, clinic, and ambulatory blood pressure monitoring in children with chronic renal failure. Pediatr Res. 2004;55:492–7.

    Article  PubMed  Google Scholar 

  31. Ogedegbe G, Schoenthaler A. A systematic review of the effects of home blood pressure monitoring on medication adherence. J Clin Hypertens (Greenwich). 2006;8:174–80.

    Article  Google Scholar 

  32. Nordmann A, Frach B, Walker T, et al. Comparison of self-reported home blood pressure measurements with automatically stored values and ambulatory blood pressure. Blood Press. 2000;9:200–5.

    Article  CAS  PubMed  Google Scholar 

  33. Parati G, Stergiou GS, Asmar R, et al. European Society of Hypertension guidelines for blood pressure monitoring at home: a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring. J Hypertens. 2008;26:1505–26.

    Article  CAS  PubMed  Google Scholar 

  34. O’Sullivan JJ, Derrick G, Griggs P, et al. Ambulatory blood pressure in schoolchildren. Arch Dis Child. 1999;80:529–32.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Soergel M, Kirschstein M, Busch C, et al. Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1141 subjects. J Pediatr. 1997;130:178–84.

    Article  CAS  PubMed  Google Scholar 

  36. Wühl E, Witte K, Soergel M, et al. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002;20:1995–2007.

    Article  PubMed  Google Scholar 

  37. Bald M, Kubel S, Rascher W. Validity and reliability of 24 h blood pressure monitoring in children and adolescents using a portable, oscillometric device. J Hum Hypertens. 1994;8:363–6.

    CAS  PubMed  Google Scholar 

  38. Owens P, Atkins N, O’Brien E. Diagnosis of white coat hypertension by ambulatory blood pressure monitoring. Hypertension. 1999;34:267–72.

    Article  CAS  PubMed  Google Scholar 

  39. Staessen JA, Thijs L, Fagard R, et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators. JAMA. 1999;282:539–46.

    Article  CAS  PubMed  Google Scholar 

  40. Clement DL, De Buyzere ML, De Bacquer DA, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348:2407–15.

    Article  PubMed  Google Scholar 

  41. Sega R, Facchetti R, Bombelli M, et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation. 2005;111:1777–83.

    Article  PubMed  Google Scholar 

  42. Sorof JM, Cardwell G, Franco K, Portman RJ. Ambulatory blood pressure and left ventricular mass index in hypertensive children. Hypertension. 2002;39:903–8.

    Article  CAS  PubMed  Google Scholar 

  43. Profant J, Dimsdale JE. Race and diurnal blood pressure patterns. A review and meta-analysis. Hypertension. 1999;33:1099–104.

    Article  CAS  PubMed  Google Scholar 

  44. Park MK, Menard SW, Yuan C. Comparison of blood pressure in children from three ethnic groups. Am J Cardiol. 2001;87:1305–8.

    Article  CAS  PubMed  Google Scholar 

  45. Barón AE, Freyer B, Fixler DE. Longitudinal blood pressures in blacks, whites, and Mexican Americans during adolescence and early adulthood. Am J Epidemiol. 1986;123:809–17.

    Article  PubMed  Google Scholar 

  46. Palatini P. Too much of a good thing? A critique of overemphasis on the use of ambulatory blood pressure monitoring in clinical practice. J Hypertens. 2002;20:1917–23.

    Article  CAS  PubMed  Google Scholar 

  47. Liu M, Takahashi H, Morita Y, et al. Non-dipping is a potent predictor of cardiovascular mortality and is associated with autonomic dysfunction in haemodialysis patients. Nephrol Dial Transplant. 2003;18:563–9.

    Article  PubMed  Google Scholar 

  48. Ohkubo T, Hozawa A, Yamaguchi J, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002;20:2183–9.

    Article  CAS  PubMed  Google Scholar 

  49. Farmer CK, Goldsmith DJ, Cox J, et al. An investigation of the effect of advancing uraemia, renal replacement therapy and renal transplantation on blood pressure diurnal variability. Nephrol Dial Transplant. 1997;12:2301–7.

    Article  CAS  PubMed  Google Scholar 

  50. Timio M, Venanzi S, Lolli S, et al. “Non-dipper” hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin Nephrol. 1995;43:382–7.

    CAS  PubMed  Google Scholar 

  51. The 1984 report of the Joint National Committee on detection, evaluation, and treatment of high blood pressure. Arch Intern Med. 1984;144:1045–57.

    Google Scholar 

  52. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med. 1997;157:2413–46.

    Google Scholar 

  53. Blumenthal S, Epps RP, Heavenrich R, et al. Report of the task force on blood pressure control in children. Pediatrics. 1977;59:I–II, 797–820.

    CAS  PubMed  Google Scholar 

  54. Rosner B, Cook N, Portman R, et al. Blood pressure differences by ethnic group among United States children and adolescents. Hypertension. 2009;54:502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muntner P, He J, Cutler JA, et al. Trends in blood pressure among children and adolescents. JAMA. 2004;291:2107–13.

    Article  CAS  PubMed  Google Scholar 

  56. Staessen JA, Asmar R, De Buyzere M, et al. Task force II: blood pressure measurement and cardiovascular outcome. Blood Press Monit. 2001;6:355–70.

    Article  CAS  PubMed  Google Scholar 

  57. De Man SA, André JL, Bachmann H, et al. Blood pressure in childhood: pooled findings of six European studies. J Hypertens. 1991;9:109–14.

    Article  PubMed  Google Scholar 

  58. Park MK, Menard SW, Schoolfield J. Oscillometric blood pressure standards for children. Pediatr Cardiol. 2005;26:601–7.

    Article  CAS  PubMed  Google Scholar 

  59. Jackson LV, Thalange NKS, Cole TJ. Blood pressure centiles for Great Britain. Arch Dis Child. 2007;92:298–303.

    Article  PubMed  Google Scholar 

  60. Neuhauser HK, Thamm M, Ellert U, et al. Blood pressure percentiles by age and height from nonoverweight children and adolescents in Germany. Pediatrics. 2011;127:e978–88.

    Article  PubMed  Google Scholar 

  61. Al Salloum AA, El Mouzan MI, Al Herbish AS, et al. Blood pressure standards for Saudi children and adolescents. Ann Saudi Med. 2009;29:173–8.

    PubMed  PubMed Central  Google Scholar 

  62. Sung RYT, Choi KC, So H-K, et al. Oscillometrically measured blood pressure in Hong Kong Chinese children and associations with anthropometric parameters. J Hypertens. 2008;26:678–84.

    Article  CAS  PubMed  Google Scholar 

  63. Munkhaugen J, Lydersen S, Widerøe T-E, Hallan S. Blood pressure reference values in adolescents: methodological aspects and suggestions for Northern Europe tables based on the Nord-Trøndelag Health Study II. J Hypertens. 2008;26:1912–8.

    Article  CAS  PubMed  Google Scholar 

  64. Report of the Second Task Force on Blood Pressure Control in Children – 1987. Task Force on Blood Pressure Control in Children. National Heart, Lung, and Blood Institute, Bethesda, Maryland. Pediatrics 1987;79:1–25.

    Google Scholar 

  65. Park MK, Lee DH. Normative arm and calf blood pressure values in the newborn. Pediatrics. 1989;83:240–3.

    CAS  PubMed  Google Scholar 

  66. Dionne JM, Abitbol CL, Flynn JT. Hypertension in infancy: diagnosis, management and outcome. Pediatr Nephrol. 2012;27:17–32.

    Article  PubMed  Google Scholar 

  67. Mancia G, Sega R, Bravi C, et al. Ambulatory blood pressure normality: results from the PAMELA study. J Hypertens. 1995;13:1377–90.

    Article  CAS  PubMed  Google Scholar 

  68. Stergiou GS, Yiannes NG, Rarra VC, Panagiotakos DB. Home blood pressure normalcy in children and adolescents: the Arsakeion School study. J Hypertens. 2007;25:1375–9.

    Article  CAS  PubMed  Google Scholar 

  69. White WB, Schulman P, McCabe EJ, Dey HM. Average daily blood pressure, not office blood pressure, determines cardiac function in patients with hypertension. JAMA. 1989;261:873–7.

    Article  CAS  PubMed  Google Scholar 

  70. White WB, Dey HM, Schulman P. Assessment of the daily blood pressure load as a determinant of cardiac function in patients with mild-to-moderate hypertension. Am Heart J. 1989;118:782–95.

    Article  CAS  PubMed  Google Scholar 

  71. Nehal US, Ingelfinger JR. Pediatric hypertension: recent literature. Curr Opin Pediatr. 2002;14:189–96.

    Article  PubMed  Google Scholar 

  72. Urbina E, Alpert B, Flynn J, et al. Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young and the Council for High Blood Pressure Research. Hypertension. 2008;52:433–51.

    Article  CAS  PubMed  Google Scholar 

  73. Koshy S, Macarthur C, Luthra S, et al. Ambulatory blood pressure monitoring: mean blood pressure and blood pressure load. Pediatr Nephrol. 2005;20:1484–6.

    Article  PubMed  Google Scholar 

  74. Lande MB, Meagher CC, Fisher SG, et al. Left ventricular mass index in children with white coat hypertension. J Pediatr. 2008;153:50–4.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kavey R-EW, Kveselis DA, Atallah N, Smith FC. White coat hypertension in childhood: evidence for end-organ effect. J Pediatr. 2007;150:491–7.

    Article  PubMed  Google Scholar 

  76. Angeli F, Verdecchia P, Gattobigio R, et al. White-coat hypertension in adults. Blood Press Monit. 2005;10:301–5.

    Article  PubMed  Google Scholar 

  77. Stergiou GS, Yiannes NJ, Rarra VC, Alamara CV. White-coat hypertension and masked hypertension in children. Blood Press Monit. 2005;10:297–300.

    Article  PubMed  Google Scholar 

  78. Ogedegbe G, Agyemang C, Ravenell JE. Masked hypertension: evidence of the need to treat. Curr Hypertens Rep. 2010;12:349–55.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lurbe E, Torro I, Alvarez V, et al. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension. 2005;45:493–8.

    Article  CAS  PubMed  Google Scholar 

  80. Swinford R, Portman R. Diagnostic evaluation of pediatric hypertension. In: Portman R, Sorof J, Ingelfinger J, editors. Pediatric hypertension. Totowa: Humana Press; 2004. p. 405–20.

    Chapter  Google Scholar 

  81. Bloch MJ, Basile JN. New British guidelines mandate ambulatory blood pressure monitoring to diagnose hypertension in all patients: not ready for prime time in the United States. J Clin Hypertens (Greenwich). 2011;13:785–6.

    Article  Google Scholar 

  82. Pickering TG, Miller NH, Ogedegbe G, et al. Call to action on use and reimbursement for home blood pressure monitoring: executive summary: a joint scientific statement from the American Heart Association, American Society Of Hypertension, and Preventive Cardiovascular Nurses Association. Hypertension. 2008;52:1–9.

    Article  CAS  PubMed  Google Scholar 

  83. ESCAPE Trial Group, Wühl E, Trivelli A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.

    Article  Google Scholar 

  84. Lurbe E, Thijs L, Redón J, et al. Diurnal blood pressure curve in children and adolescents. J Hypertens. 1996;14:41–6.

    Article  CAS  PubMed  Google Scholar 

  85. Portaluppi F, Montanari L, Ferlini M, Gilli P. Altered circadian rhythms of blood pressure and heart rate in non-hemodialysis chronic renal failure. Chronobiol Int. 1990;7:321–7.

    Article  CAS  PubMed  Google Scholar 

  86. Carvalho MJ, van Den Meiracker AH, Boomsma F, et al. Diurnal blood pressure variation in progressive autonomic failure. Hypertension. 2000;35:892–7.

    Article  CAS  PubMed  Google Scholar 

  87. Narkiewicz K, Winnicki M, Schroeder K, et al. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39:168–72.

    Article  PubMed  Google Scholar 

  88. Lurbe E, Redon J, Liao Y, et al. Ambulatory blood pressure monitoring in normotensive children. J Hypertens. 1994;12:1417–23.

    Article  CAS  PubMed  Google Scholar 

  89. Hadtstein C, Wühl E, Soergel M, et al. Normative values for circadian and ultradian cardiovascular rhythms in childhood. Hypertension. 2004;43:547–54.

    Article  CAS  PubMed  Google Scholar 

  90. Wühl E, Hadtstein C, Mehls O, Schaefer F. Ultradian but not circadian blood pressure rhythms correlate with renal dysfunction in children with chronic renal failure. J Am Soc Nephrol. 2005;16:746–54.

    Article  PubMed  Google Scholar 

  91. Wolfenstetter A, Simonetti GD, Pöschl J, et al. Altered cardiovascular rhythmicity in children born small for gestational age. Hypertension. 2012;60:865–70.

    Article  CAS  PubMed  Google Scholar 

  92. Sander D, Kukla C, Klingelhöfer J, et al. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study. Circulation. 2000;102:1536–41.

    Article  CAS  PubMed  Google Scholar 

  93. Kikuya M, Hozawa A, Ohokubo T, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension. 2000;36:901–6.

    Article  CAS  PubMed  Google Scholar 

  94. Sawka AM, Jaeschke R, Singh RJ, Young Jr WF. A comparison of biochemical tests for pheochromocytoma: measurement of fractionated plasma metanephrines compared with the combination of 24-hour urinary metanephrines and catecholamines. J Clin Endocrinol Metab. 2003;88:553–8.

    Article  CAS  PubMed  Google Scholar 

  95. Sarathi V, Pandit R, Patil VK, et al. Performance of plasma fractionated free metanephrines by enzyme immunoassay in the diagnosis of pheochromocytoma and paraganglioma in children. Endocr Pract. 2012;18:694–9.

    Article  PubMed  Google Scholar 

  96. Dillon MJ, Ryness JM. Plasma renin activity and aldosterone concentration in children. Br Med J. 1975;4:316–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Guzzetta PC, Potter BM, Ruley EJ, et al. Renovascular hypertension in children: current concepts in evaluation and treatment. J Pediatr Surg. 1989;24:1236–40.

    Article  CAS  PubMed  Google Scholar 

  98. Kotliar C, Inserra F, Forcada P, et al. Are plasma renin activity and aldosterone levels useful as a screening test to differentiate between unilateral and bilateral renal artery stenosis in hypertensive patients? J Hypertens. 2010;28:594–601.

    Article  CAS  PubMed  Google Scholar 

  99. Harshfield GA, Alpert BS, Pulliam DA. Renin-angiotensin-aldosterone system in healthy subjects aged ten to eighteen years. J Pediatr. 1993;122:563–7.

    Article  CAS  PubMed  Google Scholar 

  100. Pedersen EB. New tools in diagnosing renal artery stenosis. Kidney Int. 2000;57:2657–77.

    Article  CAS  PubMed  Google Scholar 

  101. Dillon MJ. The diagnosis of renovascular disease. Pediatr Nephrol. 1997;11:366–72.

    Article  CAS  PubMed  Google Scholar 

  102. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation. 1978;58:1072–83.

    Article  CAS  PubMed  Google Scholar 

  103. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    Article  CAS  PubMed  Google Scholar 

  104. De Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20:1251–60.

    Article  PubMed  Google Scholar 

  105. De Simone G, Devereux RB, Daniels SR, et al. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25:1056–62.

    Article  PubMed  Google Scholar 

  106. Matteucci MC, Wühl E, Picca S, et al. Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol. 2006;17:218–26. doi:10.1681/ASN.2005030276.

    Article  PubMed  Google Scholar 

  107. Okin PM, Wright JT, Nieminen MS, et al. Ethnic differences in electrocardiographic criteria for left ventricular hypertrophy: the LIFE study. Losartan Intervention For Endpoint. Am J Hypertens. 2002;15:663–71.

    Article  PubMed  Google Scholar 

  108. Daniels SR, Kimball TR, Morrison JA, et al. Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am J Cardiol. 1995;76:699–701.

    Article  CAS  PubMed  Google Scholar 

  109. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22:709–14.

    Article  PubMed  Google Scholar 

  110. Foster BJ, Mackie AS, Mitsnefes M, et al. A novel method of expressing left ventricular mass relative to body size in children. Circulation. 2008;117:2769–75.

    Article  PubMed  Google Scholar 

  111. Borzych D, Bakkaloglu SA, Zaritsky J, et al. Defining left ventricular hypertrophy in children on peritoneal dialysis. Clin J Am Soc Nephrol. 2011;6:1934–43.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Li L-J, Cheung CY-L, Liu Y, et al. Influence of blood pressure on retinal vascular caliber in young children. Ophthalmology. 2011;118:1459–65.

    Article  PubMed  Google Scholar 

  113. Mitchell P, Cheung N, de Haseth K, et al. Blood pressure and retinal arteriolar narrowing in children. Hypertension. 2007;49:1156–62.

    Article  CAS  PubMed  Google Scholar 

  114. Sairenchi T, Iso H, Yamagishi K, et al. Mild retinopathy is a risk factor for cardiovascular mortality in Japanese with and without hypertension: the Ibaraki Prefectural Health Study. Circulation. 2011;124:2502–11.

    Article  PubMed  Google Scholar 

  115. Raczyńska K, Potaz P, Aleszewicz-Baranowska J. Epidemiology of hypertensive retinopathy in young patients after coarctation of the aorta repair. Klin Oczna. 2004;106:456–9.

    PubMed  Google Scholar 

  116. Daniels SR, Lipman MJ, Burke MJ, Loggie JM. Determinants of retinal vascular abnormalities in children and adolescents with essential hypertension. J Hum Hypertens. 1993;7:223–8.

    CAS  PubMed  Google Scholar 

  117. Skalina ME, Annable WL, Kliegman RM, Fanaroff AA. Hypertensive retinopathy in the newborn infant. J Pediatr. 1983;103:781–6.

    Article  CAS  PubMed  Google Scholar 

  118. Raitakari OT, Juonala M, Kähönen M, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003;290:2277–83.

    Article  CAS  PubMed  Google Scholar 

  119. O’Leary DH, Polak JF, Kronmal RA, et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340:14–22.

    Article  PubMed  Google Scholar 

  120. Davis PH, Dawson JD, Mahoney LT, Lauer RM. Increased carotid intimal-medial thickness and coronary calcification are related in young and middle-aged adults. The Muscatine study. Circulation. 1999;100:838–42.

    Article  CAS  PubMed  Google Scholar 

  121. Litwin M, Wühl E, Jourdan C, et al. Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol. 2005;16:1494–500.

    Article  PubMed  Google Scholar 

  122. Litwin M, Trelewicz J, Wawer Z, et al. Intima-media thickness and arterial elasticity in hypertensive children: controlled study. Pediatr Nephrol. 2004;19:767–74.

    Article  PubMed  Google Scholar 

  123. Lande MB, Carson NL, Roy J, Meagher CC. Effects of childhood primary hypertension on carotid intima media thickness: a matched controlled study. Hypertension. 2006;48:40–4.

    Article  CAS  PubMed  Google Scholar 

  124. Doyon A, Kracht D, Bayazit AK, et al. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension. 2013;62:550–6.

    Article  CAS  PubMed  Google Scholar 

  125. Parving HH, Oxenbøll B, Svendsen PA, et al. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol. 1982;100:550–5.

    CAS  PubMed  Google Scholar 

  126. Jardine MJ, Hata J, Woodward M, et al. Prediction of kidney-related outcomes in patients with type 2 diabetes. Am J Kidney Dis. 2012;60:770–8.

    Article  CAS  PubMed  Google Scholar 

  127. Varda NM, Gregoric A. A diagnostic approach for the child with hypertension. Pediatr Nephrol. 2005;20:499–506.

    Article  PubMed  Google Scholar 

  128. Bigazzi R, Bianchi S, Baldari D, Campese VM. Microalbuminuria predicts cardiovascular events and renal insufficiency in patients with essential hypertension. J Hypertens. 1998;16:1325–33.

    Article  CAS  PubMed  Google Scholar 

  129. Schrader J, Lüders S, Kulschewski A, et al. Microalbuminuria and tubular proteinuria as risk predictors of cardiovascular morbidity and mortality in essential hypertension: final results of a prospective long-term study (MARPLE Study)*. J Hypertens. 2006;24:541–8.

    Article  CAS  PubMed  Google Scholar 

  130. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351:1755–62.

    Article  CAS  PubMed  Google Scholar 

  131. Flynn JT. Evaluation and management of hypertension in childhood. Prog Pediatr Cardiol. 2001;12:177–88.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Gimpel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gimpel, C., Wühl, E. (2016). Investigation of Hypertension in Childhood. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics