Skip to main content

Childhood Hypertension: Epidemiology, Etiology, Target Organ Damage, and Consequences

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

Despite evidence of an increasing prevalence of hypertension in the young, the consequences of early onset hypertension are poorly established and often overlooked. In children hypertension can be caused by multiple conditions, and symptoms are often nonspecific or absent. It is therefore warranted to consider a wide range of differential diagnoses and to search for definable causes of hypertension, particularly in young children who have very high blood pressure. Consequent screening for early organ damage such as left ventricular hpertrophy, albuminuria, increased carotid intima-media thickness and pulse wave velocity, and even subtle clues to impaired brain function is key to the evaluation process. The accurate identification of hypertension at the earliest possible age provides a window of opportunity to initiate preventive measures, thereby reducing the risk of permanent organ damage, long-term morbidity and reduced lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lurbe E, Cifkova R, Cruickshank JK, Dillon MJ, Ferreira I, Invitti C, Kuznetsova T, Laurent S, Mancia G, Morales-Olivas F, Rascher W, Redon J, Schaefer F, Seeman T, Stergiou G, Wuhl E, Zanchetti A. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens. 2009;27:1719–42.

    Article  CAS  PubMed  Google Scholar 

  2. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114 Suppl 2:555–76.

    Article  Google Scholar 

  3. Flynn J, Zhang Y, Solar-Yohay S, Shi V. Clinical and demographic characteristics of children with hypertension. Hypertension. 2012;60:1047–54.

    Article  CAS  PubMed  Google Scholar 

  4. Falkner B. Hypertension in children and adolescents: epidemiology and natural history. Pediatr Nephrol. 2010;25:1219–24.

    Article  PubMed  Google Scholar 

  5. Sorof JM, Lai D, Turner J, Poffenbarger T, Portman R. Overweight, ethnicity and the prevalence of hypertension in school-aged children. Pediatrics. 2004;113:475–82.

    Article  PubMed  Google Scholar 

  6. Harshfield GA, Wilson ME. Ethnic differences in childhood blood pressure. In: Portman RJ, Sorof JM, Ingelfinger JR, editors. Pediatric hypertension. Totowa: Humana Press; 2004. p. 293–305.

    Chapter  Google Scholar 

  7. Munter PH, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291:2107–13.

    Article  Google Scholar 

  8. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation. 2007;116:1488–96.

    Article  PubMed  Google Scholar 

  9. Chiolero A, Cachat F, Burnier M, Paccaud F, Bovet P. Prevalence of hypertension in schoolchildren based on repeated measurements and association with overweight. J Hypertens. 2007;25:2209–17.

    Article  CAS  PubMed  Google Scholar 

  10. Hansen ML, Gunn PW, Kaelber DC. Underdiagnosis of hypertension in children and adolescents. JAMA. 2007;298:874–9.

    Article  CAS  PubMed  Google Scholar 

  11. Acosta AA, Samuels JA, Portman RJ, Redwine KM. Prevalence of persistent prehypertension in adolescents. J Pediatr. 2012;160:757–61.

    Article  PubMed  Google Scholar 

  12. Redwine KM, Acosta AA, Poffenbarger T, Portman RJ, Samuels J. Development of hypertension in adolescents with pre-hypertension. J Pediatr. 2012;160:98–103.

    Article  PubMed  Google Scholar 

  13. Lurbe E, Thijs L, Torro MI, Alvarez J, Staessen JA, Redon J. Sexual dimorphism in the transition from masked to sustained hypertension in healthy youths. Hypertension. 2013;62:410–4.

    Article  CAS  PubMed  Google Scholar 

  14. Shear CL, Burke GL, Freedman DS, Berenson GS. Value of childhood blood pressure measurements and family history in predicting future blood pressure status: results from 8 years of follow-up in the Bogalusa Heart Study. Pediatrics. 1986;77:862–9.

    CAS  PubMed  Google Scholar 

  15. Clarke WR, Schrott HG, Burns TL, Sing CF, Lauer RM. Aggregation of blood pressure in the families of children with labile high systolic blood pressure. The Muscatine Study. Am J Epidemiol. 1986;123:67–80.

    Article  CAS  PubMed  Google Scholar 

  16. Oikonen M, Tikkanen E, Juhola J, Tuovinen T, Seppälä I, Juonala M, Taittonen L, Mikkilä V, Kähönen M, Ripatti S, Viikari J, Lehtimäki T, Havulinna AS, Kee F, Newton-Cheh C, Peltonen L, Schork NJ, Murray SS, Berenson GS, Chen W, Srinivasan SR, Salomaa V, Raitakari OT. Genetic variants and blood pressure in a population-based cohort: the cardiovascular risk in young Finns study. Hypertension. 2011;58:1079–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brady TM, Fivush B, Parekh RS, Flynn JT. Racial differences among children with primary hypertension. Pediatrics. 2010;126:931–7.

    Article  PubMed  Google Scholar 

  18. Rosner B, Cook N, Daniels SR, Falkner B. Childhood blood pressure trends and risk factors for high blood pressure: the NHANES experience 1988–2008. Hypertension. 2013;62:247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lurbe E. Childhood blood pressure: trends and future tracks. Hypertension. 2013;62:242–3.

    Article  CAS  PubMed  Google Scholar 

  20. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Capuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013;346:f1326.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lazarou C, Panagiotakos DB, Matalas AL. Lifestyle factors are determinants of children’s blood pressure levels: the CYKIDS study. J Hum Hypertens. 2009;23:456–63.

    Article  CAS  PubMed  Google Scholar 

  22. Gidding SS, Barton BA, Dorgan JA, Kimm SY, Kwiterovich PO, Lasser NL, Robson AM, Stevens VJ, Van Horn L, Simons-Morton DG. Higher self-reported physical activity is associated with lower systolic blood pressure: the Dietary Intervention Study in Childhood (DISC). Pediatrics. 2006;118:2388–93.

    Article  PubMed  Google Scholar 

  23. Leary SD, Ness AR, Smith GD, Mattocks C, Deere K, Blair SN, Riddoch C. Physical activity and blood pressure in childhood: findings from a population-based study. Hypertension. 2008;51:92–8.

    Article  CAS  PubMed  Google Scholar 

  24. Knowles G, Pallan M, Thomas GN, Ekelund U, Cheng KK, Barrett T, Adab P. Physical activity and blood pressure in primary school children: a longitudinal study. Hypertension. 2013;61:70–5.

    Article  CAS  PubMed  Google Scholar 

  25. Barker DJP, editor. Fetal and infant origins of adult disease. 1st ed. London: BMJ Books; 1992.

    Google Scholar 

  26. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18:815–31.

    Article  CAS  PubMed  Google Scholar 

  27. Falkner B, Hulman S, Kushner H. Effect of birth weight on blood pressure and body size in early adolescence. Hypertension. 2004;43:203–7.

    Article  CAS  PubMed  Google Scholar 

  28. Lurbe E, Torro I, Rodríguez C, Alvarez V, Redon J. Birth weight influences blood pressure values and variability in children and adolescents. Hypertension. 2001;38:389–93.

    Article  CAS  PubMed  Google Scholar 

  29. Lurbe E, Torro I, Alvarez V, Aguilar F, Redon J. The impact of birth weight on pulse pressure during adolescence. Blood Press Monit. 2004;9:187–92.

    Article  PubMed  Google Scholar 

  30. Bayrakci US, Schaefer F, Duzova A, Yigit S, Bakkaloglu A. Abnormal circadian blood pressure regulation in children born preterm. J Pediatr. 2007;151:399–403.

    Article  PubMed  Google Scholar 

  31. Lurbe E, Garcia-Vicent C, Torro I, Fayos JL, Aguilar F, de Llano JM, Fuertes G, Redon J. First-year blood pressure increase steepest in low birth weight newborns. J Hypertens. 2007;25:81–6.

    Article  CAS  PubMed  Google Scholar 

  32. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353:1802–9.

    Article  CAS  PubMed  Google Scholar 

  33. Lurbe E, Garcia-Vicent C, Torro MI, Aguilar F, Redon J. Associations of birth weight and postnatal weight gain with cardiometabolic risk parameters at 5 years of age. Hypertension. 2014;63:1326–32.

    Article  CAS  PubMed  Google Scholar 

  34. Slopen N, Koenen KC, Kubzansky LD. Cumulative adversity in childhood and emergent risk factors for long-term health. J Pediatr. 2014;164:631–8.

    Article  PubMed  Google Scholar 

  35. Parrish C, Surkan PJ, Martins SS, Gattaz WF, Andrade LH, Viana MC. Childhood adversity and adult onset of hypertension and heart disease in São Paulo, Brazil. Prev Chronic Dis. 2013;5(10):E205.

    Google Scholar 

  36. Flynn JT, Daniels SR, Hayman LL, Maahs DM, McCrindle BW, Mitsnefes M, Zachariah JP, Urbina EM, American Heart Association Atherosclerosis. Hypertension and obesity in youth committee of the council on cardiovascular disease in the young. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension. 2014;63:1116–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, Clement D, de la Sierra A, de Leeuw P, Dolan E, Fagard R, Graves J, Head GA, Imai Y, Kario K, Lurbe E, Mallion JM, Mancia G, Mengden T, Myers M, Ogedegbe G, Ohkubo T, Omboni S, Palatini P, Redon J, Ruilope LM, Shennan A, Staessen JA, van Montfrans G, Verdecchia P, Waeber B, Wang J, Zanchetti A, Zhang Y, European Society of Hypertension Working Group on Blood Pressure Monitoring. European society of hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31:1731–68.

    Article  PubMed  CAS  Google Scholar 

  38. Wühl E, Witte K, Soergel M, Mehls O, Schaefer F, German Working Group on Pediatric Hypertension. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002;20:1995–2007.

    Article  PubMed  Google Scholar 

  39. Stabouli S, Kotsis V, Toumanidis S, Papamichael C, Constantopoulos A, Zakopoulos N. White-coat and masked hypertension in children: association with target organ damage. Pediatr Nephrol. 2005;20:1151–5.

    Article  PubMed  Google Scholar 

  40. Matsuoka S, Kawamura K, Honda M, Awazu M. White coat effect and white coat hypertension in pediatric patients. Pediatr Nephrol. 2002;17:950–3.

    Article  PubMed  Google Scholar 

  41. Sorof JM, Poffenbarger T, Franco K, Portman R. Evaluation of white-coat hypertension in children: importance of the definitions of normal ambulatory blood pressure and the severity of casual hypertension. Am J Hypertens. 2001;14:855–60.

    Article  CAS  PubMed  Google Scholar 

  42. Lurbe E, Torro I, Alvarez V, Nawrot T, Paya R, Redon J, Staessen JA. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension. 2005;45:493–8.

    Article  CAS  PubMed  Google Scholar 

  43. Matsuoka S, Awazu M. Masked hypertension in children and young adults. Pediatr Nephrol. 2004;19:651–4.

    Article  PubMed  Google Scholar 

  44. Kavey RE, Kveselis DA, Atallah N, Smith FC. White coat hypertension in childhood: evidence for end-organ effect. J Pediatr. 2007;150:491–7.

    Article  PubMed  Google Scholar 

  45. Stergiou GS, Nasothimiou E, Giovas P, Kapoyiannis A, Vazeou A. Diagnosis of hypertension in children and adolescents based on home versus ambulatory blood pressure monitoring. J Hypertens. 2008;26:1556–62.

    Article  CAS  PubMed  Google Scholar 

  46. Mitsnefes M, Flynn J, Cohn S, Samuels J, Blydt-Hansen T, Saland J, Kimball T, Furth S, Warady B. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol. 2010;21:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Di Salvo G, Castaldi B, Baldini L, Gala S, del Gaizo F, D’Andrea A, Limongelli G, D’Aiello AF, Scognamiglio G, Sarubbi B, Pacileo G, Russo MG, Calabrò R. Masked hypertension in young patients after successful aortic coarctation repair: impact on left ventricular geometry and function. J Hum Hypertens. 2011;25:739–45.

    Article  PubMed  Google Scholar 

  48. Lurbe E, Torró MI, Alvarez J. Ambulatory blood pressure monitoring in children and adolescents: coming of age? Curr Hypertens Rep. 2013;15:143–9.

    Article  PubMed  Google Scholar 

  49. Kapur G, Baracco R. Evaluation of hypertension in children. Curr Hypertens Rep. 2013;15:433–43.

    Article  CAS  PubMed  Google Scholar 

  50. Kapur G, Mattoo TK. Primary hypertension. In: Flynn JT, Ingelfinger JR, Portman RJ, editors. Pediatric hypertension. 2nd ed. New York: Springer–Humana Press; 2011. p. 343–56.

    Chapter  Google Scholar 

  51. Londe S. Causes of hypertension in the young. Pediatr Clin North Am. 1978;25:55–65.

    Article  CAS  PubMed  Google Scholar 

  52. Grinsell MM, Norwood VF. At the bottom of the differential diagnosis list: unusual causes of pediatric hypertension. Pediatr Nephrol. 2009;24:2137–46.

    Article  PubMed  Google Scholar 

  53. Portman RJ, McNiece KL, Swinford RD, Braun MC, Samuels JA. Pediatric hypertension: diagnosis, evaluation, management, and treatment for the primary care physician. Curr Probl Pediatr Adolesc Health Care. 2005;35:262–94.

    Article  PubMed  Google Scholar 

  54. Hadtstein C, Schaefer F. Hypertension in children with chronic kidney disease: pathophysiology and management. Pediatr Nephrol. 2008;23:363–71.

    Article  PubMed  Google Scholar 

  55. Simonetti GD, Bucher BS, Tschumi S, Lava SA, Bianchetti MG. Arterial hypertension and proteinuria in pediatric chronic kidney disease. Minerva Pediatr. 2012;64:171–82.

    CAS  PubMed  Google Scholar 

  56. Kuchel OG, Shigetomi S. Dopaminergic abnormalities in hypertension associated with moderate renal insufficiency. Hypertension. 1994;23:I240–5.

    Article  CAS  PubMed  Google Scholar 

  57. Raine AE, Bedford L, Simpson AW, Ashley CC, Brown R, Woodhead JS, Ledingham JG. Hyperparathyroidism, platelet intracellular free calcium and hypertension in chronic renal failure. Kidney Int. 1993;43:700–5.

    Article  CAS  PubMed  Google Scholar 

  58. Tullus K, Brennan E, Hamilton G, Lord R, McLaren CA, Marks SD, Roebuck DJ. Renovascular hypertension in children. Lancet. 2008;371:1453–63.

    Article  CAS  PubMed  Google Scholar 

  59. Tullus K, Roebuck DJ, McLaren CA, Marks SD. Imaging in the evaluation of renovascular disease. Pediatr Nephrol. 2010;25:1049–56.

    Article  PubMed  Google Scholar 

  60. Slovut DP, Olin JW. Fibromuscular dysplasia. N Engl J Med. 2004;350:1862–71.

    Article  CAS  PubMed  Google Scholar 

  61. Tullus K. Renovascular hypertension – is it fibromuscular dysplasia or Takayasu arteritis. Pediatr Nephrol. 2013;28:191–6.

    Article  PubMed  Google Scholar 

  62. Marks SD, Tullus K. Update on imaging for suspected renovascular hypertension in children and adolescents. Curr Hypertens Rep. 2012;14:591–5.

    Article  CAS  PubMed  Google Scholar 

  63. Rothman A. Coarctation of the aorta: an update. Curr Probl Pediatr. 1998;28:33–60.

    CAS  PubMed  Google Scholar 

  64. Brili S, Dernellis J, Aggeli C, Pitsavos C, Hatzos C, Stefanadis C, Toutouzas P. Aortic elastic properties in patients with repaired coarctation of aorta. Am J Cardiol. 1998;82:1140–3.

    Article  CAS  PubMed  Google Scholar 

  65. de Divitiis M, Pilla C, Kattenhorn M, Zadinello M, Donald A, Leeson P, Wallace S, Redington A, Deanfield JE. Vascular dysfunction after repair of coarctation of the aorta: impact of early surgery. Circulation. 2001;104:I165–70.

    Article  PubMed  Google Scholar 

  66. Flynn JT, Ingelfinger JR, Portman RJ. Pediatric hypertension. In: White WB, editor. Clinical hypertension and vascular diseases. 2nd ed. Totowa: Humana Press; 2011.

    Google Scholar 

  67. Haddy TB, Mosher RB, Reaman GH. Hypertension and prehypertension in long-term survivors of childhood and adolescent cancer. Pediatr Blood Cancer. 2007;49:79–83.

    Article  PubMed  Google Scholar 

  68. Maas MH, Cransberg K, van Grotel M, Pieters R, van den Heuvel-Eibrink MM. Renin-induced hypertension in Wilms tumor patients. Pediatr Blood Cancer. 2007;48:500–3.

    Article  CAS  PubMed  Google Scholar 

  69. Allan B, Davis J, Perez E, Lew J, Sola J. Malignant neuroendocrine tumors: incidence and outcomes in pediatric patients. Eur J Pediatr Surg. 2013;23:394–9.

    Article  PubMed  Google Scholar 

  70. Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatr. 2012;171:1433–9.

    Article  CAS  PubMed  Google Scholar 

  71. Wilson RC, Krozowski ZS, Li K, Obeyesekere VR, Razzaghy-Azar M, Harbison MD, Wei JQ, Shackleton CH, Funder JW, New MI. A mutation in the HSD11B2 gene in a family with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 1995;80:2263–6.

    CAS  PubMed  Google Scholar 

  72. Morineau G, Sulmont V, Salomon R, Fiquet-Kempf B, Jeunemaitre X, Nicod J, Ferrari P. Apparent mineralocorticoid excess: report of six new cases and extensive personal experience. J Am Soc Nephrol. 2006;17:3176–84.

    Article  CAS  PubMed  Google Scholar 

  73. Dave-Sharma S, Wilson RC, Harbison MD, Newfield R, Azar MR, Krozowski ZS, Funder JW, Shackleton CH, Bradlow HL, Wei JQ, Hertecant J, Moran A, Neiberger RE, Balfe JW, Fattah A, Daneman D, Akkurt HI, De Santis C, New MI. Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 1998;83:2244–54.

    CAS  PubMed  Google Scholar 

  74. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–5.

    Article  CAS  PubMed  Google Scholar 

  75. Dluhy RG, Lifton RP. Glucocorticoid-remediable aldosteronism (GRA): diagnosis, variability of phenotype and regulation of potassium homeostasis. Steroids. 1995;60:48–51.

    Article  CAS  PubMed  Google Scholar 

  76. Litchfield WR, Anderson BF, Weiss RJ, Lifton RP, Dluhy RG. Intracranial aneurysm and hemorrhagic stroke in glucocorticoid-remediable aldosteronism. Hypertension. 1998;31:445–50.

    Article  CAS  PubMed  Google Scholar 

  77. Milford DV. Investigation of hypertension and the recognition of monogenic hypertension. Arch Dis Child. 1999;81:452–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill Jr JR, Ulick S, Milora RV, Findling JW, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79:407–14.

    Article  CAS  PubMed  Google Scholar 

  79. Findling JW, Raff H, Hansson JH, Lifton RP. Liddle’s syndrome: prospective genetic screening and suppressed aldosterone secretion in an extended kindred. J Clin Endocrinol Metab. 1997;82:1071–4.

    CAS  PubMed  Google Scholar 

  80. Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension. 1986;8:93–102.

    Article  CAS  PubMed  Google Scholar 

  81. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest. 2003;111:1039–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bucher BS, Ferrarini A, Weber N, Bullo M, Bianchetti MG, Simonetti GD. Primary hypertension in childhood. Curr Hypertens Rep. 2013;15:444–52.

    Article  CAS  PubMed  Google Scholar 

  83. Grassi G, Dell’Oro R, Facchini A, Quarti Trevano F, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22:2363–9.

    Article  CAS  PubMed  Google Scholar 

  84. Carlyle M, Jones OB, Kuo JJ, Hall JE. Chronic cardiovascular and renal actions of leptin: role of adrenergic activity. Hypertension. 2002;39:496–501.

    Article  CAS  PubMed  Google Scholar 

  85. Rahmouni K, Morgan DA, Morgan GM, Liu X, Sigmund CD, Mark AL, Haynes WG. Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 2004;114:652–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002;106:2533–6.

    Article  PubMed  Google Scholar 

  87. Horvath TL. Synaptic plasticity in energy balance regulation. Obesity. 2006;14 Suppl 5:228S–33.

    Article  CAS  PubMed  Google Scholar 

  88. Ahima RS. Adipose tissue as an endocrine organ. Obesity. 2006;14 Suppl 5:242S–9.

    Article  CAS  PubMed  Google Scholar 

  89. Grassi G. Renin-angiotensin-sympathetic crosstalks in hypertension: reappraising the relevance of peripheral interactions. J Hypertens. 2001;19:1713–6.

    Article  CAS  PubMed  Google Scholar 

  90. Taddei S, Grassi G. Angiotensin II as the link between nitric oxide and neuroadrenergic function. J Hypertens. 2005;23:935–7.

    Article  CAS  PubMed  Google Scholar 

  91. Hall JE, Brands MW, Henegat JR. Mechanisms of hypertension and kidney disease in obesity. Ann N Y Acad Sci. 1999;892:91–107.

    Article  CAS  PubMed  Google Scholar 

  92. Boustany CM, Bharadwaj K, Daugherty A, Brown DR, Randall DC, Cassis LA. Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. Am J Physiol Regul Integr Comp Physiol. 2004;287:R943–9.

    Article  CAS  PubMed  Google Scholar 

  93. Kang YS. Obesity associated hypertension: new insights into mechanism. Electrolyte Blood Press. 2013;11:46–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, Quignard-Boulange A, Negrel R, Ailhaud G, Seydoux J, Meneton P, Teboul M. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001;15:2727–9.

    CAS  PubMed  Google Scholar 

  95. Goodfriend TL, Calhoun DA. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension. 2004;43:518–24.

    Article  CAS  PubMed  Google Scholar 

  96. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, McCann SM, Scherbaum WA, Bornstein SR. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100:14211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goodfriend TL, Ball DL, Egan BM, Campbell WB, Nithipatikom K. Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension. 2004;43:358–63.

    Article  CAS  PubMed  Google Scholar 

  98. Rahmouni K, Barthelmebs M, Grima M, Imbs JL, De Jong W. Influence of sodium intake on the cardiovascular and renal effects of brain mineralocorticoid receptor blockade in normotensive rats. J Hypertens. 2002;20:1829–34.

    Article  CAS  PubMed  Google Scholar 

  99. Yang Z, Kaye DM. Endothelial dysfunction and impaired L-arginine transport in hypertension and genetically predisposed normotensive subjects. Trends Cardiovasc Med. 2006;16:118–24.

    Article  CAS  PubMed  Google Scholar 

  100. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003;278:45021–6.

    Article  CAS  PubMed  Google Scholar 

  101. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22:709–14.

    Article  PubMed  Google Scholar 

  102. Malcolm DD, Burns TL, Mahoney LT, Lauer RM. Factors affecting left ventricular mass in childhood: the Muscatine study. Pediatrics. 1993;92:703–9.

    CAS  PubMed  Google Scholar 

  103. de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25:1056–62.103.

    Article  PubMed  Google Scholar 

  104. Foster BJ, Gao T, Mackie AS, Zemel BS, Ali H, Platt RW, Colan SD. Limitations of expressing left ventricular mass relative to height and to body surface area in children. J Am Soc Echocardiogr. 2013;26:410–8.

    Article  PubMed  Google Scholar 

  105. Urbina EM, Gidding SS, Bao W, Pickoff AS, Berdusis K, Berenson GS. Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa heart study. Circulation. 1995;91:2400–6.

    Article  CAS  PubMed  Google Scholar 

  106. Schieken RM, Schwartz PF, Goble MM. Tracking of left ventricular mass in children: race and sex comparisons: the MCV Twin Study. Medical College of Virginia. Circulation. 1998;97:1901–6.

    Article  CAS  PubMed  Google Scholar 

  107. Sivanandam S, Sinaiko AR, Jacobs Jr DR, Steffen L, Moran A, Steinberger J. Relation of increase in adiposity to increase in left ventricular mass from childhood to young adulthood. Am J Cardiol. 2006;98:411–5.

    Article  PubMed  Google Scholar 

  108. Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A, Wawer ZT, Grenda R. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol. 2006;21:811–9.

    Article  PubMed  Google Scholar 

  109. Daniels SR, Loggie JM, Khoury P, Kimball TR. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation. 1998;97:1907–11.

    Article  CAS  PubMed  Google Scholar 

  110. Kavey RE. Left ventricular hypertrophy in hypertensive children and adolescents: predictors and prevalence. Curr Hypertens Rep. 2013;15:453–7.

    Article  CAS  PubMed  Google Scholar 

  111. Matteucci MC, Wühl E, Picca S, Mastrostefano A, Rinelli G, Romano C, Rizzoni G, Mehls O, de Simone G, Schaefer F, ESCAPE Trial Group. Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol. 2006;17:218–26.

    Article  PubMed  Google Scholar 

  112. Matteucci MC, Chinali M, Rinelli G, Wühl E, Zurowska A, Charbit M, Pongiglione G, Schaefer F, ESCAPE Trial Group. Change in cardiac geometry and function in CKD children during strict BP control: a randomized study. Clin J Am Soc Nephrol. 2013;8:203–10.

    Article  CAS  PubMed  Google Scholar 

  113. Schaefer B, Rusai K, Toth A, Pasti K, Ujszaszi A, Kreko M, Horvath E, Sallay P, Reusz GS, Merkely B, Tulassay T, Szabo AJ. Cardiac magnetic resonance imaging in children with chronic kidney disease and renal transplantation. Pediatr Transplant. 2012;16:350–6.

    Article  PubMed  Google Scholar 

  114. Wingen A, Fabian-Bach C, Schaefer F, Mehls O. European study group for nutritional treatment of chronic renal failure in childhood. Randomized multicenter study of a low protein diet on the progression of chronic renal failure in children. Lancet. 1997;349:1117–23.

    Article  CAS  PubMed  Google Scholar 

  115. Toto RD. Treatment of hypertension in chronic kidney disease. Semin Nephrol. 2005;25:435–9.

    Article  PubMed  Google Scholar 

  116. Sarnak MJ, Greene T, Wang X, Beck G, Kusek JW, Collins AJ, Levey AS. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Intern Med. 2005;142:342–51.

    Article  PubMed  Google Scholar 

  117. ESCAPE Trial Group, Wühl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.

    Article  Google Scholar 

  118. Lurbe E, Torro MI, Alvarez MI, Aguilar F, Fernandez-Formoso JA, Redon J. Prevalence and factors related to urinary albumin excretion in obese youths. J Hypertens. 2013;31:2230–6.

    Article  CAS  PubMed  Google Scholar 

  119. Jourdan C, Wühl E, Litwin M, Fahr K, Trelewicz J, Jobs K, Schenk JP, Grenda R, Mehls O, Tröger J, Schaefer F. Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens. 2005;23:1707–15.

    Article  CAS  PubMed  Google Scholar 

  120. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Task Force Members. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  CAS  PubMed  Google Scholar 

  121. Sass C, Herbeth B, Chapet O, Siest G, Visvikis S, Zannad F. Intimamedia thickness and diameter of carotid and femoral arteries in children, adolescents and adults from the Stanislas cohort: effect of age, sex, anthropometry and blood pressure. J Hypertens. 1998;16:1593–602.

    Article  CAS  PubMed  Google Scholar 

  122. Sorof JM, Alexandrov AV, Cardwell G, Portman RJ. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics. 2003;111:61–6.

    Article  PubMed  Google Scholar 

  123. Juonala M, Viikari JSA, Laitinen T, Marniemi J, Helenius H, Rönnemaa T, Raitakari OT. Interrelations between brachial endothelial function and carotid intima-media thickness in young adults. The cardiovascular risk in young Finns study. Circulation. 2004;110:2918–23.

    Article  PubMed  Google Scholar 

  124. Davis PH, Dawson JD, Riley WA, Lauer RM. Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: the Muscatine study. Circulation. 2001;104:2815–9.

    Article  CAS  PubMed  Google Scholar 

  125. Juhola J, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, Srinivasan SR, Daniels SR, Davis PH, Chen W, Kähönen M, Taittonen L, Urbina E, Viikari JS, Dwyer T, Raitakari OT, Juonala M. Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis: the International Childhood Cardiovascular Cohort Consortium. Circulation. 2013;128:217–24.

    Article  PubMed  Google Scholar 

  126. Vlachopoulos C, Ioakeimidis N, Aznaouridis K, Terentes-Printzios D, Rokkas K, Aggelis A, Panagiotakos D, Stefanadis C. Prediction of cardiovascular events with aortic stiffness in patients with erectile dysfunction. Hypertension. 2014;64(3):672–8.

    Article  CAS  PubMed  Google Scholar 

  127. Lurbe E, Torro I, Garcia-Vicent C, Alvarez J, Fernández-Fornoso JA, Redon J. Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension. 2012;60:550–5.

    Article  CAS  PubMed  Google Scholar 

  128. Lande MB, Kupferman JC, Adams HR. Neurocognitive alterations in hypertensive children and adolescents. J Clin Hypertens (Greenwich). 2012;14:353–9.

    Article  Google Scholar 

  129. Lande MB, Adams HR, Kupferman JC, Hooper SR, Szilagyi PG, Batisky DL. A multicenter study of neurocognition in children with hypertension: methods, challenges, and solutions. J Am Soc Hypertens. 2013;7:353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kupferman JC, Lande MB, Adams HR, Pavlakis SG. Primary hypertension and neurocognitive and executive functioning in school-age children. Pediatr Nephrol. 2013;28:401–8.

    Article  PubMed  Google Scholar 

  131. Marc Y, Gao J, Balavoine F, Michaud A, Roques BP, Llorens-Cortes C. Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats. Hypertension. 2012;60:411–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Empar Lurbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lurbe, E., Simonetti, G. (2016). Childhood Hypertension: Epidemiology, Etiology, Target Organ Damage, and Consequences. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics