Skip to main content

FISHing for Food Microorganisms

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

FISH has the potential to make the visualization of microorganisms in food matrices possible and to allow for the enumeration, location, and distribution of positive, spoilage, and pathogenic microorganisms via nondestructive methods. Innovative techniques and methodical improvements have boosted the potential of FISH to study food microorganisms. The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. As it enables the detection of most bacteria, even in samples where the proportion of cultivable bacteria among the total microbial population is relatively low, FISH has been applied for the specific detection of food spoilers as well as an early enumeration and identification of specific contamination sources in factory processes, including food pathogens and food-borne parasites. In this chapter, we present an updated overview on FISH protocols for the microbiological analysis of food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cocolin L, Ercolini D (2015) Zooming into food-associated microbial consortia: a “cultural” evolution. Curr Opin Food Sci 2:43–50

    Article  Google Scholar 

  2. Bridier A, Hammes F, Canette A et al (2015) Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 213:2–16

    Article  CAS  PubMed  Google Scholar 

  3. Cocolin L, Alessandria V, Dolci P et al (2013) Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int J Food Microbiol 167:29–43

    Article  CAS  PubMed  Google Scholar 

  4. Cocolin L, Ercolini D (2008) Molecular techniques in the microbial ecology of fermented foods. Springer, New York

    Book  Google Scholar 

  5. Bokulich NA, Mills DA (2012) Next-generation approaches to the microbial ecology of food fermentations. BMB Rep 45:377–389

    Article  CAS  PubMed  Google Scholar 

  6. Sohier D, Pavan S, Riou A et al (2014) Evolution of microbiological analytical methods for dairy industry needs. Front Microbiol 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davis C (2014) Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods 103:9–17

    Article  CAS  PubMed  Google Scholar 

  8. Kuchta T, Knutsson R, Fiore A et al (2014) A decade with nucleic acid-based microbiological methods in safety control of foods. Lett Appl Microbiol 59:263–271

    Article  CAS  PubMed  Google Scholar 

  9. Rohde A, Hammerl JA, Appel B et al (2015) FISHing for bacteria in food-a promising tool for the reliable detection of pathogenic bacteria? Food Microbiol 46:395–407

    Article  CAS  PubMed  Google Scholar 

  10. Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73:485–494

    Article  CAS  PubMed  Google Scholar 

  11. Davey HM (2011) Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77:5571–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. PostGate JR (1967) Viability measurements and the survival of microbes under minimum stress. Adv Microb Physiol 1:1–23

    Article  Google Scholar 

  13. Kaprelyants AS, Kell DB (1993) Dormancy in stationary-phase cultures of micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59:3187–3196

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13:908–914

    Article  CAS  PubMed  Google Scholar 

  15. Kaprelyants AS, Mukamolova GV, Davey HM et al (1996) Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting. Appl Environ Microbiol 62:1311–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mukamolova GV, Murzin AG, Salina EG et al (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98

    Article  CAS  PubMed  Google Scholar 

  17. Amann R, Kühl M (1998) In situ methods for assessment of microorganisms and their activities. Curr Opin Microbiol 1:352–358

    Article  CAS  PubMed  Google Scholar 

  18. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    Article  CAS  PubMed  Google Scholar 

  19. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Amann R, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 12:231–236

    Article  CAS  PubMed  Google Scholar 

  21. Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    Article  CAS  PubMed  Google Scholar 

  22. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Article  CAS  PubMed  Google Scholar 

  23. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wagner M, Haider S (2012) New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotechnol 23:96–102

    Article  CAS  PubMed  Google Scholar 

  25. Ouverney CC, Fuhrman JA (1997) Increase in fluorescence intensity of 16S rRNA in situ hybridization in natural samples treated with chloramphenicol. Appl Environ Microbiol 63:2735–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Frischer ME, Floriani PJ, Nierzwicki-Bauer SA (1996) Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure. Can J Microbiol 42:1061–1071

    Article  CAS  PubMed  Google Scholar 

  27. Fuchs BM, Wallner G, Beisker W et al (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973–4982

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brehm-Stecher BF (2008) Methods for whole cell detection of microorganisms. In: Camesano TA, Mello CM (eds) Microbial surfaces. American Chemical Society, Washington, DC, pp 29–51

    Chapter  Google Scholar 

  29. Schönhuber W, Zarda B, Eix S et al (1999) In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 65:1259–1267

    PubMed  PubMed Central  Google Scholar 

  30. Cerqueira L, Azevedo NF, Almeida C et al (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9:1944–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takada T, Matsumoto K, Nomoto K (2004) Development of multi-color FISH method for analysis of seven Bifidobacterium species in human faeces. J Microbiol Methods 58:413–421

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi N, Kitaguchi A, Nasu M (2012) Selective enumeration of viable Enterobacteriaceae and Pseudomonas spp. in milk within 7 h by multicolor fluorescence in situ hybridization following microcolony formation. J Biosci Bioeng 113:746–750

    Article  CAS  PubMed  Google Scholar 

  33. Bisha B, Brehm-Stecher BF (2009) Simple adhesive-tape-based sampling of tomato surfaces combined with rapid fluorescence in situ hybridization for Salmonella detection. Appl Environ Microbiol 75:1450–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Azevedo NF, Jardim T, Almeida C et al (2011) Application of flow cytometry for the identification of Staphylococcus epidermidis by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) in blood samples. Antonie Van Leeuwenhoek 100:463–470

    Article  CAS  PubMed  Google Scholar 

  35. Manti A, Boi P, Amalfitano S et al (2011) Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification. J Microbiol Methods 87:309–315

    Article  PubMed  Google Scholar 

  36. Neumeyer A, Hübschmann T, Müller S et al (2013) Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry. Microb Biotechnol 6:157–167

    Article  PubMed  CAS  Google Scholar 

  37. Kolloffel B, Meile L, Teuber M (1999) Analysis of brevibacteria on the surface of Gruyere cheese detected by in situ hybridization and by colony hybridization. Lett Appl Microbiol 29:317–322

    Article  Google Scholar 

  38. Mounier J, Monnet C, Jacques N et al (2009) Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches. Int J Food Microbiol 133:31–37

    Article  CAS  PubMed  Google Scholar 

  39. Bottari B, Santarelli M, Neviani E et al (2010) Natural whey starter for Parmigiano Reggiano: culture-independent approach. J Appl Microbiol 108:1676–1684

    Article  CAS  PubMed  Google Scholar 

  40. Babot JD, Hidalgo M, Argañaraz-Martínez E et al (2011) Fluorescence in situ hybridization for detection of classical propionibacteria with specific 16S rRNA-targeted probes and its application to enumeration in Gruyère cheese. Int J Food Microbiol 145:221–228

    Article  CAS  PubMed  Google Scholar 

  41. Branco P, Monteiro M, Moura P et al (2012) Survival rate of wine-related yeasts during alcoholic fermentation assessed by direct live/dead staining combined with fluorescence in situ hybridization. Int J Food Microbiol 158:49–57

    Article  CAS  PubMed  Google Scholar 

  42. Machado A, Almeida C, Carvalho A et al (2013) Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples. Int J Food Microbiol 162:64–70

    Article  CAS  PubMed  Google Scholar 

  43. Mikš-Krajnik M, Babuchowski A (2014) 16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization. Lett Appl Microbiol 59:320–327

    Article  PubMed  CAS  Google Scholar 

  44. Ercolini D, Villani F, Aponte M et al (2006) Fluorescence in situ hybridisation detection of Lactobacillus plantarum group on olives to be used in natural fermentations. Int J Food Microbiol 112:291–296

    Article  CAS  PubMed  Google Scholar 

  45. Stender H, Kurtzman C, Hyldig-Nielsen JJ et al (2001) Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl Environ Microbiol 67:938–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blasco L, Ferrer S, Pardo I (2003) Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiol Lett 225:115–123

    Article  CAS  PubMed  Google Scholar 

  47. Xufre A, Albergaria H, Inácio J et al (2006) Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Int J Food Microbiol 108:376–384

    CAS  PubMed  Google Scholar 

  48. Andorra I, Monteiro M, Esteve-Zarzoso B et al (2011) Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR. Food Microbiol 28:1483–1491

    Article  CAS  PubMed  Google Scholar 

  49. Wang C, Esteve-Zarzoso B, Mas A (2014) Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization. Int J Food Microbiol 191:1–9

    Article  CAS  PubMed  Google Scholar 

  50. Yuuki T, Kagami N (2001) Novel quantitative method for detection of pectinatus using rRNA targeted fluorescent probes. Am Soc Brew Chem 53:117–121

    Google Scholar 

  51. Thelen K, Beimfohr C, Bohak I, Back W (2002) Specific rapid detection test for beer-spoilage bacteria using fluorescently labelled gene probes. Brauwelt Int 20:155–159

    Google Scholar 

  52. Thelen K, Beimfohr C, Snaidr J (2003) Specific rapid detection of Alicyclobacillus by fluorescently- labeled gene probes in fruit juices. Fruit Proc 6:416–418

    Google Scholar 

  53. Fornasari ME, Rossetti L, Remagni C et al (2008) Quantification of Enterococcus italicus in traditional Italian cheeses by fluorescence whole-cell hybridization. Syst Appl Microbiol 31:223–230

    Article  CAS  PubMed  Google Scholar 

  54. Vieira-Pinto M, Oliveira M, Bernardo F et al (2007) Rapid detection of Salmonella spp. in pork samples using fluorescent in situ hybridization: a comparison with VIDAS®-SLM system and ISO 6579 cultural method. Arq Bras Med Veterinária E Zootec 59:1388–1393

    Article  Google Scholar 

  55. Gunasekera T (2003) Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk. Int J Food Microbiol 85:269–279

    Article  CAS  PubMed  Google Scholar 

  56. Stephan R, Schumacher S, Zychowska MA (2003) The VIT technology for rapid detection of Listeria monocytogenes and other Listeria spp. Int J Food Microbiol 89:287–290

    Article  CAS  PubMed  Google Scholar 

  57. Schmid MW, Lehner A, Stephan R et al (2005) Development and application of oligonucleotide probes for in situ detection of thermotolerant Campylobacter in chicken fecal and liver samples. Int J Food Microbiol 105:245–255

    Article  CAS  PubMed  Google Scholar 

  58. Fuchizawa I, Shimizu S, Kawai Y et al (2008) Specific detection and quantitative enumeration of Listeria spp. using fluorescent in situ hybridization in combination with filter cultivation (FISHFC). J Appl Microbiol 105:502–509

    Article  CAS  PubMed  Google Scholar 

  59. Fuchizawa I, Shimizu S, Ootsubo M et al (2009) Specific and rapid quantification of viable Listeria monocytogenes using fluorescence in situ hybridization in combination with filter cultivation. Microbes Environ 24:273–275

    Article  PubMed  Google Scholar 

  60. Almeida C, Azevedo NF, Fernandes RM et al (2010) Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Appl Environ Microbiol 76:4476–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oliveira M, Vieira-Pinto M, Martins da Costa P et al (2012) Occurrence of Salmonella spp. in samples from pigs slaughtered for consumption: a comparison between ISO 6579:2002 and 23S rRNA Fluorescent In Situ Hybridization method. Food Res Int 45:984–988

    Article  CAS  Google Scholar 

  62. Zhang X, Wu S, Li K et al (2012) Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii. Int J Food Microbiol 157:309–313

    Article  CAS  PubMed  Google Scholar 

  63. Graczyk TK, Conn DB, Lucy F et al (2004) Human waterborne parasites in zebra mussels (Dreissena polymorpha) from the Shannon River drainage area, Ireland. Parasitol Res 93:385–391

    Article  PubMed  Google Scholar 

  64. Laflamme C, Gendron L, Turgeon N et al (2009) Rapid detection of germinating Bacillus cereus cells using fluorescent in situ hybridization. J Rapid Methods Autom Microbiol 17:80–102

    Article  Google Scholar 

  65. Schmid M, Walcher M, Bubert A et al (2003) Nucleic acid-based, cultivation-independent detection of Listeria spp. and genotypes of L. monocytogenes. FEMS Immunol Med Microbiol 35:215–225

    Article  CAS  PubMed  Google Scholar 

  66. Ercolini D, Hill PJ, Dodd CER (2003) Development of a fluorescence in situ hybridization method for cheese using a 16S rRNA probe. J Microbiol Methods 52:267–271

    Article  CAS  PubMed  Google Scholar 

  67. Bisha B, Brehm-Stecher BF (2010) Combination of adhesive-tape-based sampling and fluorescence in situ hybridization for rapid detection of Salmonella on fresh produce. J Vis Exp 44:2308

    PubMed  Google Scholar 

  68. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  PubMed Central  Google Scholar 

  69. Wagner M, Schmid M, Juretschko S et al (1998) In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol Lett 160:159–168

    Article  CAS  PubMed  Google Scholar 

  70. Krimmer V, Merkert H, von Eiff C et al (1999) Detection of Staphylococcus aureus and Staphylococcus epidermidis in clinical samples by 16S rRNA-directed in situ hybridization. J Clin Microbiol 37:2667–2673

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee N, Nielsen PH, Andreasen KH et al (1999) Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Moter A, Leist G, Rudolph R et al (1998) Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. Microbiology 144:2459–2467

    Article  CAS  PubMed  Google Scholar 

  73. Ludwig W (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yilmaz LS, Parnerkar S, Noguera DR (2011) mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol 77:1118–1122

    Article  CAS  PubMed  Google Scholar 

  75. Greuter D, Loy A, Horn M, Rattei T (2016) probeBase-an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res 44:D586–D589

    Article  PubMed  Google Scholar 

  76. Manz W, Amann R, Ludwig W et al (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  77. Langendijk PS, Schut F, Jansen GJ et al (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ootsubo M, Shimizu T, Tanaka R et al (2002) Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization. J Appl Microbiol 93:60–68

    Article  CAS  PubMed  Google Scholar 

  79. Roller C, Wagner M, Amann R et al (1994) In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology 140:2849–2858

    Article  CAS  PubMed  Google Scholar 

  80. Alm EW, Oerther DB, Larsen N et al (1996) The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ercolini D, Hill PJ, Dodd CER (2003) Bacterial community structure and location in Stilton cheese. Appl Environ Microbiol 69:3540–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. García-Hernández J, Moreno Y, Amorocho CM et al (2012) A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus. Lett Appl Microbiol 54:247–254

    Article  PubMed  CAS  Google Scholar 

  83. Meier H, Amann R, Ludwig W et al (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. Syst Appl Microbiol 22:186–196

    Article  CAS  PubMed  Google Scholar 

  84. Nissen H, Holck A, Dainty RH (1994) Identification of Carnobacterium spp. and Leuconostoc spp. in meat by genus-specific 16S rRNA probes. Lett Appl Microbiol 19:165–168

    Article  CAS  PubMed  Google Scholar 

  85. Hirschhäuser S, Fröhlich J, Gneipel A et al (2005) Fast protocols for the 5S rDNA and ITS-2 based identification of Oenococcus oeni. FEMS Microbiol Lett 244:165–171

    Article  PubMed  CAS  Google Scholar 

  86. Amann R, Snaidr J, Wagner M et al (1996) In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Almeida C, Azevedo NF, Santos S et al (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6, e14786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Beimfohr C, Krause A, Amann R et al (1993) In situ identification of Lactococci, Enterococci and Streptococci. Syst Appl Microbiol 16:450–456

    Article  Google Scholar 

  89. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    Article  CAS  PubMed  Google Scholar 

  90. Cannone JJ, Subramanian S, Schnare MN et al (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  91. Santarelli M, Bottari B, Malacarne M et al (2013) Variability of lactic acid production, chemical and microbiological characteristics in 24-hour Parmigiano Reggiano cheese. Dairy Sci Technol 93:605–621

    Article  CAS  Google Scholar 

  92. Tang YZ, Gin KYH, Lim TH (2005) High-temperature fluorescent in situ hybridization for detecting Escherichia coli in seawater samples, using rRNA-targeted oligonucleotide probes and flow cytometry. Appl Environ Microbiol 71:8157–8164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tortorello M, Reineke K (2000) Direct enumeration of Escherichia coli and enteric bacteria in water, beverages and sprouts by 16S rRNA in situ hybridization. Food Microbiol 17:305–313

    Article  CAS  Google Scholar 

  94. Bottari B, Agrimonti C, Gatti M et al (2013) Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters. Int J Food Microbiol 160:290–297

    Article  CAS  PubMed  Google Scholar 

  95. Jain KK (2004) Current status of fluorescent in-situ hybridisation. Med Device Technol 15:14–17

    CAS  PubMed  Google Scholar 

  96. Bouvier T, Del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Article  CAS  PubMed  Google Scholar 

  97. de Vries MC, Vaughan EE, Kleerebezem M, de Vos WM (2004) Optimising single cell activity assessment of Lactobacillus plantarum by fluorescent in situ hybridisation as affected by growth. J Microbiol Methods 59:109–115

    Article  PubMed  CAS  Google Scholar 

  98. Ray A, Nordén B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–1060

    CAS  PubMed  Google Scholar 

  99. Almeida C, Azevedo NF, Iversen C et al (2009) Development and application of a novel peptide nucleic acid probe for the specific detection of Cronobacter genomospecies (Enterobacter sakazakii) in powdered infant formula. Appl Environ Microbiol 75:2925–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Almeida C, Cerqueira L, Azevedo NF, Vieira MJ (2013) Detection of Salmonella enterica serovar Enteritidis using real time PCR, immunocapture assay, PNA FISH and standard culture methods in different types of food samples. Int J Food Microbiol 161:16–22

    Article  CAS  PubMed  Google Scholar 

  101. Almeida C, Sousa JM, Rocha R et al (2013) Detection of Escherichia coli O157 by peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) and comparison to a standard culture method. Appl Environ Microbiol 79:6293–6300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sørensen AH, Torsvik VL, Torsvik T et al (1997) Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes. Appl Environ Microbiol 63:3043–3050

    PubMed  PubMed Central  Google Scholar 

  103. Kubota K (2013) CARD-FISH for environmental microorganisms: technical advancement and future applications. Microbes Environ 28:3–12

    Article  PubMed  Google Scholar 

  104. Bond PL, Banfield JF (2001) Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb Ecol 41:149–161

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Bottari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Bottari, B., Mancini, A., Ercolini, D., Gatti, M., Neviani, E. (2017). FISHing for Food Microorganisms. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics