Skip to main content

Yeast Chromosome Dynamics Revealed by Immuno FISH

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 3275 Accesses

Abstract

Fluorescence in situ hybridization (FISH) provides an effective means to delineate chromosomes and their subregions during all stages of the cell cycle. This makes FISH particularly useful for studying chromosome behavior in species with minute genomes and/or weak chromosome condensation at metaphase, which is the case for model organisms such as the budding yeast Saccharomyces cerevisiae or Schizosaccharomyces pombe. Since its introduction in 1992, yeast FISH with composite whole chromosome or locus-specific probes in combination with immunofluorescence staining has become an indispensable tool in the analysis of chromosome behavior in metaphase and interphase cells, and especially of meiotic chromosome pairing of wild-type and mutant yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherry JM, Adler C, Ball C et al (1998) SGD: saccharomyces genome database. Nucleic Acids Res 26:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goffeau AEA et al (1997) The yeast genome directory. Nature 387:S1–S105

    Google Scholar 

  3. Kater JM (1927) Cytology of Saccharomyces cerevisiae with special reference to nuclear division. Biol Bulletin 52:436–449

    Article  Google Scholar 

  4. Wintersberger U, Binder M, Fischer P (1975) Cytogenetic demonstration of mitotic chromosomes in the yeast Saccharomyces cerevisiae. Mol Gen Genet 142:13–17

    CAS  PubMed  Google Scholar 

  5. Kuroiwa T, Kojima H, Miyakawa I et al (1984) Meiotic karyotype of the yeast Saccharomyces cerevisiae. Exp Cell Res 153:259–265

    Article  CAS  PubMed  Google Scholar 

  6. Dresser M, Giroux C (1988) Meiotic chromosome behavior in spread preparations of yeast. J Cell Biol 106:567–573

    Article  CAS  PubMed  Google Scholar 

  7. Loidl J, Nairz K, Klein F (1991) Meiotic chromosome synapsis in a haploid yeast. Chromosoma 100:221–228

    Article  CAS  PubMed  Google Scholar 

  8. Scherthan H, Loidl J, Schuster T et al (1992) Meiotic chromosome condensation and pairing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma 101:590–595

    Article  CAS  PubMed  Google Scholar 

  9. Loidl J (2003) Chromosomes of the budding yeast Saccharomyces cerevisiae. Int Rev Cytol 222:141–196

    Google Scholar 

  10. Loidl J, Lorenz A (2009) Analysis of Schizosaccharomyces pombe meiosis by nuclear spreading. Methods Mol Biol 558:15–36

    Article  PubMed  Google Scholar 

  11. Guacci V, Hogan E, Koshland D (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125:517–530

    Article  CAS  PubMed  Google Scholar 

  12. Loidl J, Klein F, Scherthan H (1994) Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J Cell Biol 125:191–200

    Article  Google Scholar 

  13. Weiner BM, Kleckner N (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77:977–991

    Article  CAS  PubMed  Google Scholar 

  14. Rockmill B, Sym M, Scherthan H et al (1995) Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev 9:2684–2695

    Article  CAS  PubMed  Google Scholar 

  15. Gotta M, Laroche T, Gasser SM (1999) Analysis of nuclear organization in Saccharomyces cerevisiae. Methods Enzymol 304:663–672

    Article  CAS  PubMed  Google Scholar 

  16. Trelles-Sticken E, Adelfalk C, Loidl J et al (2005) Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 170:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Admire A, Shanks L, Danzl N et al (2006) Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 20:159–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Straight AF, Belmont AS, Robinett CC, Murray AW (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599–1608

    Article  CAS  PubMed  Google Scholar 

  19. Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45

    Article  CAS  PubMed  Google Scholar 

  20. Aragon-Alcaide L, Strunnikov AV (2000) Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae. Nat Cell Biol 2:812–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lorenz A, Fuchs J, Trelles-Sticken E et al (2002) Spatial organisation and behavior of the parental chromosome sets in the nuclei of Saccharomyces cerevisiae x S. paradoxus hybrids. J Cell Sci 115:3829–3835

    Article  CAS  PubMed  Google Scholar 

  22. Kilmartin JV, Wright B, Milstein C (1982) Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol 93:576–582

    Article  CAS  PubMed  Google Scholar 

  23. Pringle JR, Adams AE, Drubin DG et al (1991) Immunofluorescence methods for yeast. Methods Enzymol 194:565–602

    Article  CAS  PubMed  Google Scholar 

  24. Kane SM, Roth R (1974) Carbohydrate metabolism during ascospore development in yeast. J Bacteriol 118:8–14

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Trelles-Sticken E, Loidl J, Scherthan H (1999) Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 112:651–658

    CAS  PubMed  Google Scholar 

  26. Trelles-Sticken E, Dresser ME, Scherthan H (2000) Meiotic telomere protein Ndj1p is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing. J Cell Biol 151:95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loidl J, Jin Q-W, Jantsch M (1998) Meiotic pairing and segregation of translocation quadrivalents in yeast. Chromosoma 107:247–254

    Article  CAS  PubMed  Google Scholar 

  28. Scherthan H, Loidl J (2010) FISH as a tool to investigate chromosome behavior in budding yeast. Methods Mol Biol 659:363–377

    Article  CAS  PubMed  Google Scholar 

  29. Roth R, Halvorson HO (1969) Sporulation of yeast harvested during logarithmic growth. J Bacteriol 98:831–832

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Scherthan H, Bahler J, Kohli J (1994) Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J Cell Biol 127:273–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank J. Loidl, E. Trelles-Sticken, and A. Lorenz for stimulating discussions. The work in the lab of HS was partly supported by the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Scherthan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Scherthan, H. (2017). Yeast Chromosome Dynamics Revealed by Immuno FISH. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics