Skip to main content

ARVIDA-Referenzarchitektur

Ressourcen-orientierte Architekturen für die Anwendungsentwicklung Virtueller Techniken

  • Chapter
  • First Online:
Web-basierte Anwendungen Virtueller Techniken

Zusammenfassung

Die ARVIDA-Referenzarchitektur ist ein zentrales Element und Ergebnis des ARVIDA-Projektes. Sie ermöglicht es, mit etablierten Technologien und Konzepten aus dem Web-Umfeld heterogene VT-Systemlandschaften in integrierten, sehr weitgehend plattformunabhängigen VT-Anwendungen effizient zu nutzen. Die Referenzarchitektur nutzt und adaptiert das Prinzip der RESTful-Web-Services sowie die darauf aufbauenden Linked-Data Konzepte, um interoperable, leicht erweiterbare und modulare VT-Anwendungen zu bauen. Die nachfolgenden Abschnitte beschreiben die Grundprinzipien und spezifischen Erweiterungen im Detail.

Abstract

The ARVIDA reference architecture is a central result of the ARVDIA project. With the help of well-established web technologies and concepts the reference architecture enables heterogeneous VT systems to become platform independent applications. The reference architecture uses and adopts the principle of RESTful web services and the associated Linked-Data concepts to build interoperable, extensible and modular VT applications. This chapter describes the basic principles and the specific extensions in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Ankolekar A, Paolucci M, Sycara K (2005) Towards a formal verification of OWL-S process models, proceedings of 4th International Semantic Web Conference ISWC 2005. Galway, Ireland.

    Google Scholar 

  2. Apple Bonjour. https://www.apple.com/de/support/bonjour/. Zugegriffen: 07. Juli 2016

  3. Avahi, http://avahi.org/download/doxygen/ Zugegriffen: 07. Juli 2016

  4. Azuma RT (1997) A survey of augmented reality, presence: teleoperators and virtual environments

    Google Scholar 

  5. Benchmarksgame (2016) http://benchmarksgame.alioth.debian.org/dont-jump-to-conclusions.html. Zugegriffen: 07. Juli 2016

  6. Brauns S, Koriath D, Käfer T, Harth A (2016) Individualisiertes Gruppentraining mit Datenbrillen für die Produktion. In Tagungsband zum Workshop „Arbeitsplatz der Zukunft“ der 46. Jahrestagung der Gesellschaft für Informatik, akzeptiert zur Publikation

    Google Scholar 

  7. Berners-Lee T, W3C. https://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html. Zugegriffen: 07. Juli 2016

  8. Berners-Lee T (2009) Linked data – connect distributed data across the Web. http://linkeddata.org/presentations. Zugegriffen: 07. Juli 2016

  9. Berners-Lee T, Connolly D (2011) Notation3 (N3): a readable RDF syntax, https://www.w3.org/TeamSubmission/n3/ Zugegriffen: 07. Juli 2016

  10. Bizer C, Gauß T (2007) RDF book mashup, http://wifo5-03.informatik.uni-mannheim.de/bizer/bookmashup/ Zugegriffen: 07. Juli 2016

  11. Bizer C, Heath T, Berners-Lee T (2009) Linked data-the story so far. http://eprints.soton.ac.uk/271285/1/bizer-heath-berners-lee-ijswis-linked-data.pdf. Zugegriffen: 07. Juli 2016

  12. Boehm BW (1978) Characteristics of software quality. North-Holland Pub. Co.

    Google Scholar 

  13. Brisaboa NR, Fernández JD, Martínez-Petro AM, Navarro G (2014) Compressed vertical partitioning for full-in-memory RDF management in technical report, knowledge and information systems. Springer, London, S 1–36

    Google Scholar 

  14. Clang C/C++ Compiler. http://clang.llvm.org/. Zugegriffen: 07. Juli 2016

  15. Comet Daily. http://cometdaily.com/ /. Zugegriffen: 07. Juli 2016

  16. CoreOS Etcd. https://coreos.com/etcd/ /. Zugegriffen: 07. Juli 2016

  17. Dbpedia. http://de.dbpedia.org/. Zugegriffen: 07. Juli 2016

  18. DNS Service Discovery http://www.dns-sd.org. Zugegriffen: 07. Juli 2016

  19. DNS Resource Record, https://de.wikipedia.org/wiki/Resource_Record. Zugegriffen: 07. Juli 2016

  20. Echtler F, Huber M, Pustka D, Keitler P, Klinker G (2008) Splitting the scene graph – using spatial relationship graphs instead of scene graphs in augmented reality. in: Proceedings of the 3rd International Conference on Computer Graphics Theory and Applications (GRAPP).

    Google Scholar 

  21. Ermert M (2016) IETF 96: Google bringt sein Quic-Protokoll auf den Weg zum Internet-Standard, http://www.heise.de/netze/meldung/IETF-96-Google-bringt-sein-Quic-Protokoll-auf-den-Weg-zum-Internet-Standard-3273702.html. Zugegriffen: 07. Juli 2016

  22. Fernández JD, Martínez-Petro AM, Gutierrez C (2010) Compact representation of large RDF data sets for publishing and exchange. ISCW: 14th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2011, La Laguna, 7–11 November 2011

    Google Scholar 

  23. Fernández JD, Laves A, Corcho O (2014) Efficient RDF Interchange (ERI) format for RDF data streams. ISCW

    Google Scholar 

  24. Fielding R (2000) Architectural styles and the design of network-based software architectures, dissertation. University of California, Irvine

    Google Scholar 

  25. Fielding R, Taylor R (2002) Principled design of the modern web architecture. ACM Trans. Internet Technol. 2:115–150. doi:http://dx.doi.org/10.1145/514183.514185

  26. Gesellschaft für Informatik. https://www.gi.de/service/informatiklexikon/detailansicht/article/web-services.html. Zugegriffen: 07. Juli 2016

  27. Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing? Int’l Journal of Human-Computer Studies 43(5):907–928

    Google Scholar 

  28. Han Z, Zhang L, Ling J, Huang S (2012) Control-flow pattern based transformation from UML activity diagram to YAWL, in lecture notes in business information processing, 122, S 129–145

    Article  Google Scholar 

  29. H|Anim Humanoid Animation Working Group. http://h-anim.org/. Zugegriffen: 07. Juli 2016

  30. Huber M (2009) Parasitic tracking: Enabling ubiquitous tracking through existing Infrastructure. In: Proceedings of IEEE pervasive computing and communications, PhD Forum (PerCom’09).

    Google Scholar 

  31. Hypertext Transfer Protocol Version 2 (HTTP/2) (2015), https://tools.ietf.org/html/rfc7540 Zugegriffen: 07. Juli 2016

  32. IPv4 Link-Local Addresses, http://www.ietf.org/rfc/rfc3927.txt. Zugegriffen: 07. Juli 2016

  33. ISO/IEC 25010:2011(2011) Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) –System and software quality models

    Google Scholar 

  34. JCGM 200, editor. International vocabulary of metrology – basic and general concepts and associated terms (VIM). 3rd edition, 2012

    Google Scholar 

  35. Jinja2 Template Library. http://jinja.pocoo.org. Zugegriffen: 07. Juli 2016

  36. Keitler P (2011) Management of tracking. Technische Universität München, Dissertation, München

    Google Scholar 

  37. Keppmann FL, Käfer T, Stadtmüller S, Schubotz R, Harth A (2014) Integrating highly dynamic restful linked data apis in a virtual reality environment. in: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, ISMAR

    Google Scholar 

  38. Koziolek H (2010) Performance evaluation of component-based software systems: a survey. Perform. Eval 67(8):634–658. doi:10.1016/j.peva.2009.07.007

  39. Kubernetes. http://kubernetes.io/. Zugegriffen: 07. Juli 2016

  40. Kubernetes Annotations. http://kubernetes.io/docs/user-guide/annotations/. Zugegriffen: 12. Okt. 2016

  41. Linked Data Platform 1.0, Feb. 2015. http://www.w3.org/TR/ldp/. Zugegriffen: 07. Juli 2016

  42. LinkedGeoData. http://linkedgeodata.org/About.Zugegriffen: 07. Juli 2016

  43. Martin D, Paolucci M, McIlraith S, Burstein M, McDermott D, McGuinness D, Parsia B, Payne T, Sabou M, Solanki M, Srinivasan N, Sycara K (2004) Bringing semantics to web services: the OWL-S Approach, Proceedings of the First International Workshop on Semantic Web Services and Web Process Composition (SWSWPC), July 6–9, 2004, San Diego, California.

    Google Scholar 

  44. Martínez-Petro AM, Fernández JD, Cánovas R (2012) Compression of RDF dictionaries. SAC

    Google Scholar 

  45. Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: a class of displays on the reality virtuality continuum.

    Google Scholar 

  46. Multicast Domain Name System. http://www.multicastdns.org. Zugegriffen: 12. Okt. 2016

  47. OASIS (2007) Web services business process execution language version 2.0. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel. Zugegriffen: 07.Juli 2016

  48. OWL 2 Web Ontology Language Document Overview, 2. Aufl. (Nov. 2012). http://www.w3.org/TR/owl2-overview/. Zugegriffen: 07. Juli 2016

  49. Pan JZ, Martínez-Petro AM, Ren Y, Wu H, Wang H, Zhu M (2014) Graph pattern based RDF data compression. JIST

    Google Scholar 

  50. Pan JZ, Martínez-Petro AM, Ren Y, Wu H, Zhu M (2014) SSP: Compressing RDF data by summarisation, serialisation und predictive encoding, K-Drive techical report. JIST

    Google Scholar 

  51. Pautasso C, Wilde E (2009) Why is the web loosely coupled?: a multi-faceted metric for service design. http://www2009.eprints.org/92/1/p911.pdf. Zugegriffen: 07.Juli 2016

  52. Pustka D, Huber M, Bauer M, Klinker G (2006) Spatial relationship patterns: elements of reusable tracking and calibration systems. The Fifth IEEE and ACM International symposium on mixed and augmented reality, Santa Barbara, Oct. 22–25, S 88–97

    Google Scholar 

  53. RDF 1.1 Concepts and abstract syntax, Feb. 2014. http://www.w3.org/TR/rdf11-concepts/. Zugegriffen: 07.July 2016

  54. RDF 1.1 Semantics, Feb. 2014. http://www.w3.org/TR/rdf-mt/. Zugegriffen: 07. Juli 2016

  55. RDF Schema 1.1, Feb. 2014. http://www.w3.org/TR/rdf-schema/. Zugegriffen: 07.Juli 2016

  56. RDF 1.1 N-Triples, a line-based syntax for an RDF graph. https://www.w3.org/TR/n-triples/. Zugegriffen: 07.Juli 2016

  57. RDF Working group charter. https://www.w3.org/2010/09/rdf-wg-charter.html#patentpolicy. Zugegriffen: 07. Juli 2016)

  58. Redland RDF Library. http://librdf.org/. Zugegriffen: 07.Juli 2016

  59. Richardson L, Ruby S (2007) RESTful web services, O’Reilly

    Google Scholar 

  60. Roth A, Siepmann D (2016) Industrie 4.0 – Ausblick, Springer, Berlin, S 247–260

    Google Scholar 

  61. Schreiber W, Zimmermann P (Hrsg) (2011) Virtuelle Techniken im industriellen Umfeld: Das AVILUS Projekt-Technologien und Anwendungen. Springer, Berlin

    Google Scholar 

  62. Serd RDF Serialization Library. http://drobilla.net/software/serd/. Zugegriffen: 07. Juli 2016

  63. Service Name and Transport Protocol Port Number Registry. http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml. Zugegriffen: 12. Okt. 2016

  64. Siepmann D, Graef N (2016) Industrie 4.0 – Grundlagen und Gesamtzusammenhang. Springer, Berlin, S 17–82

    Google Scholar 

  65. Sord RDF Storage Library. http://drobilla.net/software/sord/ Zugegriffen: 07.Juli 2016

  66. Sowizral H (2000) Scene graphs in the new millennium. IEEE Comput Graph 20(1):56–57

    Article  Google Scholar 

  67. SPARQL 1.1 Query language (2013) http://www.w3.org/TR/sparql11-query/. Zugegriffen: 07. Juli 2016

  68. Stadtmüller S, Speiser S, Harth A, Studer R (2013) Data-Fu: A language and an interpreter for interaction with read/write linked data. In Proceedings of the International World Wide Web Conference.

    Google Scholar 

  69. Van Der Aalst W, Ter Hofstede A (2005) YAWL: yet another workflow language, in Information systems Pergamon, S 245–275

    Google Scholar 

  70. VDI/VDE (2015) Statusreport Referenzarchitekturmodell Industrie 4.0 (RAMI4.0). https://www.vdi.de/fileadmin/user_upload/VDI-GMA_Statusreport_Referenzarchitekturmodell-Industrie40.pdf. Zugegriffen: 07. Juli 2016

  71. W3C – Thing Description. https://www.w3.org/WoT/IG/wiki/Thing_Description Zugegriffen: 07. Juli 2016

  72. W3C – RSP Serialization Group. https://www.w3.org/community/rsp/wiki/RSP_Serialization_Group Zugegriffen: 07. Juli 2016

  73. W3C Document License. https://www.w3.org/Consortium/Legal/2015/doc-license. Zugegriffen: 07. Juli 2016

  74. W3C Patent Policy. https://www.w3.org/Consortium/Patent-Policy-20040205/. Zugegriffen: 07. Juli 2016

  75. Zeroconf. https://de.wikipedia.org/wiki/Zeroconf. Zugegriffen: 12. Okt. 2016

  76. Reitmayr G, Schmalstieg D (2001) Opentracker: An open software architecture for reconfigurable tracking based on XML. Proceedings of IEEE virtual reality. Yokohama, S 285–286

    Google Scholar 

  77. Taylor R, Hudson T, Seeger A, Weber H, Juliano J, Helser A (2001) VRPN: A device-independent, network-transparent VR peripheral system. Proceedings of the ACM symposium on Virtual reality software and technology, ACM Press,. – ISBN 1–58113–427–4, S 55–61

    Google Scholar 

  78. Trackframe. http://trackframe.de. Zugegriffen: 10. Okt. 2016

  79. Presenccia. http://www.presenccia.org/. Zugegriffen: 10. Okt. 2016

  80. Pankratz F (2016) Augmented reality for augmented reality. Dissertation Technische Universität München

    Google Scholar 

  81. Huber M, Pustka D, Keitler P, Echtler F, Klinker G (2007) A system architecture for ubiquitous tracking environments. Proceedings of the 6th International Symposium on Mixed and Augmented Reality (ISMAR)

    Google Scholar 

  82. Newman J, Wagner M, Bauer M (2004) Ubiquitous tracking for augmented reality. Proceedings IEEE International Symposium on Mixed and Augmented Reality (ISMAR04). Arlington, VA, USA.

    Google Scholar 

  83. Keppmann FL, Maleshkova M, Harth A (2016) Semantic technologies for realising decentralised applications for the web of things. Proceedings of the 21st International Conference on Engineering of Complex Computer Systems (ICECCS), Dubai

    Google Scholar 

  84. Keppmann FL, Käfer T, Stadtmüller S, Schubotz R, Harth A (2014) High performance linked data processing for virtrual reality environments. In Proceedings of the posters & demos of the 13th International Semantic Web Conference, ISWC.

    Google Scholar 

  85. Harth A, Knoblock C, Stadtmüller S, Studer R and Szekel P (2013) On-the-fly integration of static and dynamic linked data. Proceedings of the Fourth International Workshop on Consuming Linked Data (COLD 2013). Co-located with ISWC, Sydney

    Google Scholar 

  86. Harth A, Käfer T (2016) Towards specification and Execution of linked systems. 28. GI-Workshop Grundlagen von Datenbanken, Nörten-Hardenberg

    Google Scholar 

  87. Berners-Lee T, Connolly D (2011) Notation3 (N3): a readable RDF syntax. W3C, Team Submission, http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/. Aktuellste Version verfügbar unter https://www.w3.org/TeamSubmission/n3/. Zugegriffen: Okt. 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Behr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Behr, J. et al. (2017). ARVIDA-Referenzarchitektur. In: Schreiber, W., Zürl, K., Zimmermann, P. (eds) Web-basierte Anwendungen Virtueller Techniken. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52956-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52956-0_3

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52955-3

  • Online ISBN: 978-3-662-52956-0

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics