Skip to main content

Descriptive Complexity of Graph Spectra

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9803))

Abstract

Two graphs are co-spectral if their respective adjacency matrices have the same multi-set of eigenvalues. A graph is said to be determined by its spectrum if all graphs that are co-spectral with it are isomorphic to it. We consider these properties in relation to logical definability. We show that any pair of graphs that are elementarily equivalent with respect to the three-variable counting first-order logic \(C^3\) are co-spectral, and this is not the case with \(C^2\), nor with any number of variables if we exclude counting quantifiers. We also show that the class of graphs that are determined by their spectra is definable in partial fixed-point logic with counting. We relate these properties to other algebraic and combinatorial problems.

We thank Aida Abiad, Chris Godsil, Robin Hirsch and David Roberson for fruitful discussions. This work was supported by CONACyT, EPSRC and The Royal Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzaga, A., Iglesias, R., Pignol, R.: Spectra of symmetric powers of graphs and the Weisfeiler-Lehman refinements. J. Comb. Theory Ser. B 100(6), 671–682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ananchuen, W., Caccetta, L.: Cubic and quadruple paley graphs with the \(n\)-e. c. property. Discrete Math. 306(22), 2954–2961 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput. 9(3), 628–635 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babai, L., Kučera, L.: Canonical labelling of graphs in linear average time. In: 20th Annual Symposium on Foundations of Computer Science, 1979, pp. 39–46. IEEE (1979)

    Google Scholar 

  5. Barghi, A.R., Ponomarenko, I.: Non-isomorphic graphs with cospectral symmetric powers. Electron. J. Comb. 16(1), R120 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Blass, A., Exoo, G., Harary, F.: Paley graphs satisfy all first-order adjacency axioms. J. Graph Theory 5(4), 435–439 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brouwer, A.E., Van Lint, J.H.: Strongly regular graphs and partial geometries. In: Enumeration and Design (Waterloo, Ont., 1982), pp. 85–122 (1984)

    Google Scholar 

  8. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4), 389–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ebbinghaus, H.B., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  10. Elsawy, A.N.: Paley graphs and their generalizations (2012). arXiv preprint. arXiv:1203.1818

  11. Fagin, R.: Probabilities on finite models. J. Symbolic Logic 41(01), 50–58 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedland, S.: Coherent algebras and the graph isomorphism problem. Discrete Appl. Math. 25(1), 73–98 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Godsil, C., Royle, G.F.: Algebraic Graph Theory, vol. 207. Springer, New York (2013)

    MATH  Google Scholar 

  14. Hella, L., Kolaitis, P.G., Luosto, K.: How to define a linear order on finite models. Ann. Pure Appl. Logic 87(3), 241–267 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Higman, D.G.: Coherent configurations. Geom. Dedicata 4(1), 1–32 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Immerman, N., Lander, E.: Describing graphs: a first-order approach to graph canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59–81. Springer, New York (1990)

    Chapter  Google Scholar 

  17. Kolaitis, P.G., Vardi, M.Y.: Infinitary logics and 0–1 laws. Inf. Comput. 98(2), 258–294 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kučera, L.: Canonical labeling of regular graphs in linear average time. In: 28th Annual Symposium on Foundations of Computer Science, pp. 271–279. IEEE (1987)

    Google Scholar 

  19. Leman, A.A., Weisfeiler, B.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya 2(9), 12–16 (1968)

    Google Scholar 

  20. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  21. Schwenk, A.J.: Almost all trees are cospectral. In: New Directions in the Theory of Graphs, pp. 275–307 (1973)

    Google Scholar 

  22. Van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectrum? Linear Algebra Appl. 373, 241–272 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Zapata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dawar, A., Severini, S., Zapata, O. (2016). Descriptive Complexity of Graph Spectra. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2016. Lecture Notes in Computer Science(), vol 9803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52921-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52921-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52920-1

  • Online ISBN: 978-3-662-52921-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics