Skip to main content

Extraction of Amino Acids with ABS

  • Chapter
  • First Online:
Ionic-Liquid-Based Aqueous Biphasic Systems

Abstract

Among the several applications reported for ionic-liquid-based aqueous biphasic systems (IL-based ABS), these systems have shown to be highly effective in the extraction of amino acids. In this chapter, the extraction potential for amino acids of IL-based ABS composed of hydrophilic ILs and different salting-out/-in agents, such as inorganic and organic salts, carbohydrates, and polypropylene glycol (PPG) 400, is reviewed. A brief overview on factors affecting the extraction potential of ABS, such as the chemical structures of the ILs cations and/or anions and the salting-out effects, is also provided. The impact of the charge and the structural/physicochemical properties of the amino acids on their partition coefficients are also discussed. Finally, the effect of the addition of various imidazolium-based ILs to conventional polyethylene glycol (PEG)-salt ABS in what concerns their extraction capability for amino acids is reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertsson P-Å (1986) Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology. Wiley, New York

    Google Scholar 

  2. Walter H, Brooks DE, Fisher D (1986) Partitioning in aqueous two–phase system: theory, methods, uses, and applications to biotechnology. Elsevier, Orlando

    Google Scholar 

  3. Zaslavsky BY (1994) Aqueous two-phase partitioning: physical chemistry and bioanalytical applications. CRC Press, New York

    Google Scholar 

  4. Hatti-Kaul R (2000) Aqueous two-phase systems: methods and protocols, vol 11. Springer, New York

    Google Scholar 

  5. Hatti-Kaul R (2001) Aqueous two-phase systems. Mol Biotechnol 19(3):269–277

    Article  CAS  Google Scholar 

  6. Albertsson P-Å (1958) Partition of proteins in liquid polymer-polymer two-phase systems. Nature 182:709–711

    Article  CAS  Google Scholar 

  7. Adachi M, Harada M, Shioi A, Sato Y (1991) Extraction of amino acids to microemulsion. J Phys Chem 95(20):7925–7931

    Article  CAS  Google Scholar 

  8. Itoh H, Thien M, Hatton T, Wang D (1990) A liquid emulsion membrane process for the separation of amino acids. Biotechnol Bioeng 35(9):853–860

    Article  CAS  Google Scholar 

  9. Freire MG, Cláudio AFM, Araújo JM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41(14):4966–4995

    Google Scholar 

  10. Neves CMSS, Ventura SPM, Freire MG, Marrucho IM, Coutinho JAP (2009) Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J Phys Chem B 113(15):5194–5199

    Google Scholar 

  11. Ventura SPM, Neves CMSS, Freire MG, Marrucho IM, Oliveira J, Coutinho JAP (2009) Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems. J Phys Chem B 113(27):9304–9310

    Google Scholar 

  12. Li Z, Pei Y, Liu L, Wang J (2010) (Liquid + liquid) equilibria for (acetate-based ionic liquids + inorganic salts) aqueous two-phase systems. J Chem Thermodyn 42(7):932–937

    Article  CAS  Google Scholar 

  13. Louros CL, Cláudio AFM, Neves CMSS, Freire MG, Marrucho IM, Pauly J, Coutinho JAP (2010) Extraction of biomolecules using phosphonium-based ionic liquids + K3PO4 aqueous biphasic systems. Int J Mol Sci 11(4):1777–1791

    Google Scholar 

  14. Freire MG, Louros CL, Rebelo LPN, Coutinho JAP (2011) Aqueous biphasic systems composed of a water-stable ionic liquid + carbohydrates and their applications. Green Chem 13(6):1536–1545

    Google Scholar 

  15. Zafarani‐Moattar MT, Hamzehzadeh S (2011) Partitioning of amino acids in the aqueous biphasic system containing the water‐miscible ionic liquid 1‐butyl‐3‐methylimidazolium bromide and the water‐structuring salt potassium citrate. Biotechnol Prog 27(4):986–997

    Article  Google Scholar 

  16. Passos H, Ferreira AR, Cláudio AFM, Coutinho JAP, Freire MG (2012) Characterization of aqueous biphasic systems composed of ionic liquids and a citrate-based biodegradable salt. Biochem Eng J 67:68–76

    Google Scholar 

  17. Zafarani‐Moattar MT, Hamzehzadeh S, Nasiri S (2012) A new aqueous biphasic system containing polypropylene glycol and a water‐miscible ionic liquid. Biotechnol Prog 28(1):146–156

    Article  Google Scholar 

  18. Dupont J, de Souza RF, Suarez PA (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102(10):3667–3692

    Article  CAS  Google Scholar 

  19. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125(22):6632–6633

    Article  CAS  Google Scholar 

  20. Akama Y, Sali A (2002) Extraction mechanism of Cr (VI) on the aqueous two-phase system of tetrabutylammonium bromide and (NH4)2SO4 mixture. Talanta 57(4):681–686

    Article  CAS  Google Scholar 

  21. Neves CMSS, Carvalho PJ, Freire MG, Coutinho JAP (2011) Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids. J Chem Thermodyn 43(6):948–957

    Google Scholar 

  22. Atefi F, Garcia MT, Singer RD, Scammells PJ (2009) Phosphonium ionic liquids: design, synthesis and evaluation of biodegradability. Green Chem 11(10):1595–1604

    Article  CAS  Google Scholar 

  23. Lu M, Tjerneld F (1997) Interaction between tryptophan residues and hydrophobically modified dextran: effect on partitioning of peptides and proteins in aqueous two-phase systems. J Chromatogr A 766(1):99–108

    Article  CAS  Google Scholar 

  24. Salabat A, Abnosi MH, Motahari A (2008) Investigation of amino acid partitioning in aqueous two-phase systems containing polyethylene glycol and inorganic salts. J Chem Eng Data 53(9):2018–2021

    Article  CAS  Google Scholar 

  25. Wang J, Pei Y, Zhao Y, Hu Z (2005) Recovery of amino acids by imidazolium based ionic liquids from aqueous media. Green Chem 7(4):196–202. doi:10.1039/b415842c

    Article  CAS  Google Scholar 

  26. Fauchère JL, Charton M, Kier LB, Verloop A, Pliska V (1988) Amino acid side chain parameters for correlation studies in biology and pharmacology. Int J Pept Protein Res 32(4):269–278

    Article  Google Scholar 

  27. Lide D (2007) Handbook of chemistry and physics. Internet Version 2007. CRC Press 200:2006–2007

    Google Scholar 

  28. Zaslavsky BY, Mestechkina NM, Miheeva LM, Rogozhin SV (1982) Measurement of relative hydrophobicity of amino acid side-chains by partition in an aqueous two-phase polymeric system: Hydrophobicity scale for non-polar and ionogenic side-chains. J Chromatogr A 240(1):21–28. doi:http://dx.doi.org/10.1016/S0021-9673(01)84003-6

    Google Scholar 

  29. Zaslavsky BY, Miheeva LM, Gasanova GZ, Mahmudov AU (1987) Effect of polymer composition on the relative hydrophobicity of the phases of the biphasic system aqueous dextran-poly(ethylene glycol). J Chromatogr A 403(0):123–130. doi:http://dx.doi.org/10.1016/S0021-9673(00)96346-5

    Google Scholar 

  30. Zaslavsky BY, Gulaeva ND, Djafarov S, Masimov EA, Miheeva LM (1990) Phase separation in aqueous poly(ethylene glycol)-(NH4)2SO4 systems and some physicochemical properties of the phases. J Colloid Interface Sci 137(1):147–156. doi:http://dx.doi.org/10.1016/0021-9797(90)90051-O

    Google Scholar 

  31. Gulyaeva N, Zaslavsky A, Lechner P, Chait A, Zaslavsky B (2003) pH dependence of the relative hydrophobicity and lipophilicity of amino acids and peptides measured by aqueous two‐phase and octanol–buffer partitioning. J Pept Res 61(2):71–79

    Article  CAS  Google Scholar 

  32. Zafarani-Moattar MT, Hamzehzadeh S (2011) Effect of pH on the phase separation in the ternary aqueous system containing the hydrophilic ionic liquid 1-butyl-3-methylimidazolium bromide and the kosmotropic salt potassium citrate at T = 298.15 K. Fluid Phase Equilib 304(1):110–120

    Article  CAS  Google Scholar 

  33. Charton M, Charton BI (1982) The structural dependence of amino acid hydrophobicity parameters. J Theor Biol 99(4):629–644

    Article  CAS  Google Scholar 

  34. Visak ZP, Lopes JNC, Rebelo LPN (2007) Ionic liquids in polyethylene glycol aqueous solutions: salting-in and salting-out effects. Monatsh Chem 138(11):1153–1157

    Article  CAS  Google Scholar 

  35. Pereira JFB, Lima ÁS, Freire MG, Coutinho JAP (2010) Ionic liquids as adjuvants for the tailored extraction of biomolecules in aqueous biphasic systems. Green Chem 12(9):1661–1669

    Google Scholar 

  36. Hamzehzadeh S, Vasiresh M (2014) Ionic liquid 1-butyl-3-methylimidazolium bromide as a promoter for the formation and extraction capability of poly (ethylene glycol)-potassium citrate aqueous biphasic system at T = 298.15 K. Fluid Phase Equilib 382:80–88

    Article  CAS  Google Scholar 

  37. Hamzehzadeh S, Abbasi M (2015) The influence of 1-butyl-3-methyl-imidazolium bromide on the partitioning of l-tyrosine within the {polyethylene glycol 600+ potassium citrate} aqueous biphasic system at T = 298.15 K. J Chem Thermodyn 80:102–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Taghi Zafarani-Moattar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zafarani-Moattar, M.T., Hamzehzadeh, S. (2016). Extraction of Amino Acids with ABS. In: Freire, M. (eds) Ionic-Liquid-Based Aqueous Biphasic Systems. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52875-4_5

Download citation

Publish with us

Policies and ethics