Skip to main content

Grain Boundaries in Multicrystalline Silicon

  • Living reference work entry
  • First Online:
Handbook of Photovoltaic Silicon

Abstract

Directionally solidified (DS) silicon is typically multicrystalline (mc), i.e., it contains per definition grain boundaries. Even so-called quasi-mono silicon is not free of grain boundaries. The crystallographic arrangement of neighboring grains is used for a definition of the certain types of grain boundaries by the so-called coincidence site lattice parameter Σ. It turns out that the predominant types of grain boundaries are twin (Σ = 3), small angle (Σ ~ 1), and large angle (“random”) grain boundaries. For the solar cell application, it is of great relevance that the nontwin boundaries are often accompanied by dislocation defects. These dislocations, especially their clusters, are well known to reduce the minority charge carrier lifetime and hence the efficiency of solar cells. Therefore, the corresponding characterization methods for the types of grain boundaries, their length, spatial distribution, and grain size will be presented in this chapter.

The main part of the chapter presents a detailed treatment of the occurrence of the various types of grain boundaries and the related dislocations structures for different variants of the DS method. The most important DS variants differ from each other mainly by the seeding and nucleation processes which result in different sizes of the grains and also different prevailing grain boundaries. The so-called classic mc, dendritic mc, and quasi-mono Si material have relatively large average grain sizes ranging from mm up to cm. The solar cell performance of this material is mainly limited by the occurrence of dislocation structures which can easily spread in the relatively large grains. This problem seems to be decreased in a recently developed fine grained material (micro-meter up to mm scale). The variety of nucleation concepts to achieve a fine grained structure reaches from seeding with small Si feed or non-Si particles to specially structured profiles of the crucible bottom. The resulting higher performance of solar cells is promising for the future and gave reason to call the material high performance mc Si (HPM).

The whole chapter includes results of recent worldwide research and development activities but provides also its proving under production-like conditions. All results are illustrated by corresponding figures and allocated to important references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • G.A. Babu, I. Takahashi, S. Matsushima, N. Usami, J. Cryst. Growth 441, 124 (2016)

    Article  CAS  Google Scholar 

  • J. Bauer, O. Breitenstein, A. Lotnyk, H. Blumtritt, in 22nd European Photovoltaic Solar Energy Conference, Milan (2007), p. 994

    Google Scholar 

  • D.G. Brandon, Acta Metall. 14, 1479 (1966)

    Article  CAS  Google Scholar 

  • I. Buchovska, O. Liaskovskiy, T. Vlasenko, S. Beringov, F.M. Kiessling, Sol. Energy Mater. Sol. Cells 159, 128 (2017)

    Article  CAS  Google Scholar 

  • T. Buonassisi, M. Heuer, A.A. Istratov, M.D. Pickett, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, E.R. Weber, Acta Mater. 55, 6119 (2007)

    Article  CAS  Google Scholar 

  • D. Camel, B. Marie, D. Ponthenier, F. Servant, in 3rd International Workshop on Crystalline Silicon Solar Cells, Trondheim (2009)

    Google Scholar 

  • J. Chen, T. Sekiguchi, D. Yang, Phys. Status Solidi C 4, 2908 (2007)

    Article  CAS  Google Scholar 

  • M. Demant, S. Rein, J. Haunschild, T. Strauch, H. Höffler, J. Broisch, S. Wasmer, K. Sunder, O. Anspach, T. Brox, Prog. Photovolt. Res. Appl. 24, 1533 (2016)

    Article  CAS  Google Scholar 

  • K.E. Ekstrøm, G. Stokkan, R. Søndenå, H. Dalaker, T. Lehmann, L. Arnberg, M. Di Sabatino, Phys. Status Solidi A 212, 2278 (2015)

    Article  Google Scholar 

  • K.E. Ekstrøm, E. Undheim, G. Stokkan, L. Arnberg, M. Di Sabatino, Acta Mater. 109, 267 (2016a)

    Article  Google Scholar 

  • K.E. Ekstrøm, G. Stokkan, A. Autruffe, R. Søndenå, H. Dalaker, L. Arnberg, M. Di Sabatino, J. Cryst. Growth 441, 95 (2016b)

    Article  Google Scholar 

  • J. Friedrich, W. von Ammon, G. Müller, in Handbook of Crystal Growth, 2nd edn., ed. by P. Rudolph (Elsevier, Boston, 2015), p. 45

    Google Scholar 

  • K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Acta Mater. 54, 3191 (2006)

    Article  CAS  Google Scholar 

  • D. Helmreich, in Symposium on Electronic and Optical Properties of Polycrystalline or Impure Semiconductors and Novel Silicon Growth Methods, St. Louis (Pennington, 1980), p. 184

    Google Scholar 

  • D. Hu, S. Yuan, L. He, H. Chen, Y. Wan, X. Yu, D. Yang, Sol. Energy Mater. Sol. Cells 140, 121 (2015)

    Article  CAS  Google Scholar 

  • Intego GmbH, Gemini-Grain structure analysis (2018), https://www.intego.de/de/solar1/pruefanlagen-fuer-die-solarfertigung/wafer/gemini-kornstrukturanalyse. Accessed 18 April 2018

  • ITRPV, International Technology Roadmap for Photovoltaic (ITRPV) 2017 (2018)

    Google Scholar 

  • M. Kohyama, R. Yamamoto, M. Doyama, Phys. Status Solidi B 138, 387 (1986)

    Article  CAS  Google Scholar 

  • I. Kupka, T. Lehmann, M. Trempa, C. Kranert, C. Reimann, J. Friedrich, J. Cryst. Growth 465, 18 (2017)

    Article  CAS  Google Scholar 

  • K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, Appl. Phys. Express 6, 25505 (2013)

    Article  Google Scholar 

  • K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, IEEE J. Photovoltaics 4, 84 (2014)

    Article  Google Scholar 

  • K. Kutsukake, M. Deura, Y. Ohno, I. Yonenaga, Jpn. J. Appl. Phys. 54, 8 (2015)

    Article  Google Scholar 

  • C.W. Lan, W.C. Lan, T.F. Lee, A. Yu, Y.M. Yang, W.C. Hsu, B. Hsu, A. Yang, J. Cryst. Growth 360, 68 (2012)

    Article  CAS  Google Scholar 

  • C.W. Lan, A. Lan, C.F. Yang, H.P. Hsu, M. Yang, A. Yu, B. Hsu, W.C. Hsu, A. Yang, J. Cryst. Growth 468, 17 (2017)

    Article  CAS  Google Scholar 

  • J. Laurent, G. Rancoule, E. Drode, C. Reimann, M. Trempa, C. Kranert, J. Friedrich, L. Teale, R. Dyer, I. Dorrity, in 33rd European Photovoltaic Energy Specialist Conference, Amsterdam (2017), p. 305

    Google Scholar 

  • T. Lehmann, M. Trempa, E. Meissner, M. Zschorsch, C. Reimann, J. Friedrich, Acta Mater. 69, 1 (2014)

    Article  CAS  Google Scholar 

  • T. Lehmann, C. Reimann, E. Meissner, J. Friedrich, Acta Mater. 106, 98 (2016)

    Article  CAS  Google Scholar 

  • S. Martinuzzi, I. Périchaud, O. Palais, Sol. Energy Mater. Sol. Cells 91, 1172 (2007)

    Article  CAS  Google Scholar 

  • K. Nakajima, K. Kutsukake, K. Fujiwara, N. Usami, S. Ono, Yamasaki, in 25th European Photovoltaic Solar Energy Conference, Valencia (2010), p. 817

    Google Scholar 

  • V. Oliveira, M. Tsoutsouva, T. Lafford, E. Pihan, F. Barou, C. Cayron, D. Camel, in 29th European Photovoltaic Solar Energy Conference, Amsterdam (2014), p. 793

    Google Scholar 

  • V. Oliveira, B. Marie, C. Cayron, M. Marinova, M.G. Tsoutsouva, H.C. Sio, T.A. Lafford, J. Baruchel, G. Audoit, A. Grenier, T.N. Tran Thi, D. Camel, Acta Mater. 121, 24 (2016)

    Article  CAS  Google Scholar 

  • R.R. Prakash, K. Jiptner, J. Chen, Y. Miyamura, H. Harada, T. Sekiguchi, Appl. Phys. Express 8, 35502 (2015)

    Article  CAS  Google Scholar 

  • V. Randle, Microtexture Determination and its Applications, 2nd edn. (Maney for the Institute of Materials Minerals and Mining, London, 2003)

    Google Scholar 

  • C. Reimann, M. Trempa, T. Lehmann, K. Rosshirt, J. Stenzenberger, J. Friedrich, K. Hesse, E. Dornberger, J. Cryst. Growth 434, 88 (2016)

    Article  CAS  Google Scholar 

  • B. Ryningen, G. Stokkan, M. Kivambe, T. Ervik, O. Lohne, Acta Mater. 59, 7703 (2011)

    Article  CAS  Google Scholar 

  • D.G. Schimmel, J. Electrochem. Soc. 126, 479 (1979)

    Article  CAS  Google Scholar 

  • F. Schmid, U.S. Patent 3,898,051, 1975

    Google Scholar 

  • F. Secco D’Aragona, Solid State Sci. Technol. 119, 948 (1972)

    Google Scholar 

  • E. Sirtl, A. Adler, Z. Metallkd./Mater. Res. Adv. Tech. 52, 529 (1961)

    CAS  Google Scholar 

  • B.L. Sopori, J. Electrochem. Soc. 131, 667 (1984)

    Article  CAS  Google Scholar 

  • B. Sopori, D. Guhabiswas, P. Rupnowski, S. Shet, S. Devayajanam, H. Moutinho, in 36th IEEE Photovoltaic Specialists Conference, Seattle (2011), p. 1680

    Google Scholar 

  • N. Stoddard, Patent WO 2009/014957 A2, 29 Jan 2009

    Google Scholar 

  • N. Stoddard, W. Bei, I. Witting, M. Wagener, P. Yongkook, G. Rozgonyi, R. Clark, Solid State Phenom. 131–133, 1 (2008)

    Google Scholar 

  • I. Takahashi, S. Joonwichien, T. Iwata, N. Usami, Appl. Phys. Express 8, 105501 (2015)

    Article  Google Scholar 

  • M. Trempa, Gerichtete Erstarrung von einkristallinen Siliciumkristallen nach dem VGF-Verfahren für die Anwendung in der Photovoltaik (Fraunhofer-Verlag, Stuttgart, 2014)

    Google Scholar 

  • M. Trempa, C. Reimann, J. Friedrich, G. Müller, D. Oriwol, J. Cryst. Growth 351, 131 (2012)

    Article  CAS  Google Scholar 

  • M. Trempa, C. Reimann, J. Friedrich, G. Müller, A. Krause, L. Sylla, T. Richter, J. Cryst. Growth 405, 131 (2014)

    Article  CAS  Google Scholar 

  • M. Trempa, C. Reimann, J. Friedrich, G. Müller, L. Sylla, A. Krause, T. Richter, J. Cryst. Growth 429, 56 (2015a)

    Article  CAS  Google Scholar 

  • M. Trempa, C. Reimann, J. Friedrich, G. Müller, A. Krause, L. Sylla, T. Richter, Cryst. Res. Technol. 50, 124 (2015b)

    Article  CAS  Google Scholar 

  • M. Trempa, M. Beier, C. Reimann, K. Roßhirth, J. Friedrich, C. Löbel, L. Sylla, T. Richter, J. Cryst. Growth 454, 6 (2016)

    Article  CAS  Google Scholar 

  • M. Trempa, I. Kupka, C. Kranert, T. Lehmann, C. Reimann, J. Friedrich, J. Cryst. Growth 459, 67 (2017)

    Article  CAS  Google Scholar 

  • S. Tsurekawa, K. Kido, T. Watanabe, Mater. Sci. Eng. A 462, 61 (2007)

    Article  Google Scholar 

  • D.S. Vlachavas, Acta Crystallogr. A 41, 530 (1985)

    Article  Google Scholar 

  • F. Wilhelm, J. Appl. Crystallogr. 4, 521 (1971)

    Article  CAS  Google Scholar 

  • M. Wright-Jenkins, J. Electrochem. Soc. 124, 757 (1977)

    Article  Google Scholar 

  • K.H. Yang, J. Electrochem. Soc. 131, 1140 (1984)

    Article  CAS  Google Scholar 

  • Y.M. Yang, A. Yu, B. Hsu, W.C. Hsu, A. Yang, C.W. Lan, Prog. Photovolt. Res. Appl. 23, 340 (2015)

    Article  CAS  Google Scholar 

  • H. Zhang, D. You, C. Huang, Y. Wu, Y. Xu, P. Wu, J. Cryst. Growth 435, 91 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Trempa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Trempa, M., Müller, G., Friedrich, J., Reimann, C. (2019). Grain Boundaries in Multicrystalline Silicon. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52735-1_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52735-1_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52735-1

  • Online ISBN: 978-3-662-52735-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics