Skip to main content

Nanocomposites Based on Carbon Nanomaterials and Electronically Nonconducting Polymers

  • Chapter
  • First Online:
Composite Materials

Abstract

Polymer nanocomposites (PNCs) are the growing field of research having significant contribution in limitless application areas due to excellent combinations of tunable properties. Carbon-based PNCs are of recent research interest and cover numerous fields of applications including structural composites, drug delivery, shape memory polymers, etc. In this chapter, different allotropes of carbon, viz., carbon nanotubes, graphene, graphene oxide, fullerenes, metallofullerenes, carbon nanohorn, carbon nanodiamond, etc., are discussed in brief. Different types of polymeric materials used for the fabrication of PNCs are also introduced. Several types of carbon-based PNCs and their fabrication methodologies have been emphasized to represent a broad overview on carbon-based PNCs of nonconducting polymer matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delhaes P (2001) Graphite and precursors. CRC Press, France. ISBN 90-5699-228-7

    Google Scholar 

  2. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535

    Article  Google Scholar 

  3. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155

    Article  Google Scholar 

  4. Lueking AD, Pan L, Narayanan D, Burgess-Clifford CE (2005) Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage. J Phys Chem B 109(26):12710

    Article  Google Scholar 

  5. (2009) Discovery of graphene. APS News Ser II 18(9):2

    Google Scholar 

  6. Bhosale RR, Osmani RA, Ghodake PP, Harkare BR, Shaikh SM, Chavan SR (2013) Nanodiamonds: a new-fangled drug delivery system. Indo Am J Pharm Res 3(12):1395

    Google Scholar 

  7. Mohamed El-Say K (2011) Nanodiamond as a drug delivery system: applications and prospective. J Appl Pharm Sci 01(06):29

    Google Scholar 

  8. Kazi S (2014) A review article on nanodiamonds discussing their properties and applications. Int J Pharm Sci 3:40

    Google Scholar 

  9. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11

    Article  Google Scholar 

  10. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309(3–4):165

    Article  Google Scholar 

  11. Yodasaka M, Iijima S, Crespi VH (2008) Single-wall carbon nanohorns and nanocones. Top Appl Phys 111:605

    Article  Google Scholar 

  12. Pagona G, Mountrichas G, Rotas G, Karousis N, Pispas S, Tagmatarchis N (2009) Properties, applications and functionalisation of carbon nanohorns. Int J Nanotechnol 6:176

    Article  Google Scholar 

  13. Zhu SY, Xu GB (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2(12):2538

    Article  Google Scholar 

  14. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412

    Article  Google Scholar 

  15. Lu HB, Huang WM (2013) Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl Phys Lett 102:231910

    Article  Google Scholar 

  16. Le HH, Zulfiqar A, Mathias U, Ilisch S, Radusch HJ (2010) Effect of the cross-linking process on the electrical resistivity and shape-memory behavior of cross-linked carbon black filled ethylene-octene copolymer. J Appl Polym Sci 120:2138

    Article  Google Scholar 

  17. Lu H, Liang F, Yao Y, Gou J, Hui D (2014) Self-assembled multi-layered carbon nanofiber nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite. Compos Part B 59:191

    Article  Google Scholar 

  18. Tang Z, Sun D, Yang D, Guo B, Zhang L, Jia D (2013) Vapor grown carbon nanofiber reinforced bio-based polyester for electroactive shape memory performance. Comp Sci Technol 75:15

    Article  Google Scholar 

  19. Plaseied A, Fatemi A, Coleman MR (2008) Influence of carbon nanofiber content and surface treatment on mechanical properties of vinyl ester. Polym Polym Comp 16:405

    Google Scholar 

  20. Chen X, Wei S, Yadav A, Patil R, Zhu J, Ximenes R, Sun L, Guo Z (2011) Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties. Macromol Mater Eng 296:434

    Article  Google Scholar 

  21. Xu S, Akchurin A, Liu T, Wood W, Tangpong XW, Akhatov IS, Zhong W-H (2014) Thermal properties of carbon nanofiber reinforced high-density polyethylene nanocomposites. J Comp Mater 49:795

    Google Scholar 

  22. Sun L-H, Ounaies Z, Gao X-L, Whalen CA, Yang Z-G (2011) Preparation, characterization, and modeling of carbon nanofiber/epoxy nanocomposites. J Nanomater 2011:1

    Google Scholar 

  23. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937

    Article  Google Scholar 

  24. Bal S, Samal SS (2007) Carbon nanotube reinforced polymer composites–a state of the art. Bull Mater Sci 30:379

    Article  Google Scholar 

  25. Velasco-Santos C, Martinez-Hernandez AL, Castano VM (2005) Carbon nanotube-polymer nanocomposites: the role of interfaces. Compos Interfaces 11:567

    Article  Google Scholar 

  26. Patole AS, Patole SP, Jung S-Y, Yoo J-B, An J-H, Kim T-H (2012) Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur Polym J 48:252

    Article  Google Scholar 

  27. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219

    Article  Google Scholar 

  28. Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD (2002) Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci Technol 62:1105

    Article  Google Scholar 

  29. Tatro SR, Clayton LM, O’Rourke Muisener PA, Rao AM, Harmon JP (2004) Probing multi-walled nanotube/poly(methyl methacrylate) composites with ionizing radiation. Polymer 45:1971

    Article  Google Scholar 

  30. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62:1993

    Article  Google Scholar 

  31. Schadler LS, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842

    Article  Google Scholar 

  32. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet – carbon nanotube filler for epoxy composites. Adv Mater 20:4740

    Article  Google Scholar 

  33. Velasco-Santos C, Martínez-Hernández AL, Fisher F, Rouff RS, Castaño VM (2003) Dynamical–mechanical and thermal analysis of carbon nanotube–methyl-ethyl methacrylate nanocomposites. J Phys D Appl Phys 36:1423

    Article  Google Scholar 

  34. Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317

    Article  Google Scholar 

  35. Lee Y, Kim D, Seo J, Han H, Khan SB (2013) Preparation and characterization of poly(propylene carbonate)/exfoliated graphite nanocomposite films with improved thermal stability, mechanical properties and barrier properties. Polym Int 62:1386

    Article  Google Scholar 

  36. Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol Eng 52:319

    Article  Google Scholar 

  37. Zhou TN, Qi XD, Fu Q (2013) The preparation of the poly(vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets. Express Polym Lett 7:747

    Article  Google Scholar 

  38. Chaharmahali M, Hamzeh Y, Ebrahimi G, Ashori A, Ghasemi I (2014) Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polym Bull 71:337

    Article  Google Scholar 

  39. Wang D, Zhang X, Zha J-W, Zhao J, Dang Z-M, Hu G-H (2013) Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54:1916

    Article  Google Scholar 

  40. Goncalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emamic N, Gracio J (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927

    Article  Google Scholar 

  41. Etmimi HM, Sanderson RD (2011) New approach to the synthesis of exfoliated polymer/graphite nanocomposites by miniemulsion polymerization using functionalized graphene. Macromolecules 44:8504

    Article  Google Scholar 

  42. Traina M, Pegoretti A (2012) In situ reduction of graphene oxide dispersed in a polymer matrix. J Nanopart Res 14:1

    Article  Google Scholar 

  43. Muralidharan MN, Ansari S (2013) Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites as photomechanical actuators. Adv Mater Lett 4(12):927

    Article  Google Scholar 

  44. Lee J, Chae H-R, Won YJ, Lee K, Lee C-H, Lee HH, Kim I-C, Lee J-M (2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for waste water treatment. J Membr Sci 448:223

    Article  Google Scholar 

  45. Gaikwad S, Tate JS, Theodoropoulou N, Koo JH (2012) Electrical and mechanical properties of PA11 blended with nanographene platelets using industrial twin-screw extruder for selective laser sintering. J Comp Mater 47(23):2973

    Article  Google Scholar 

  46. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2014) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93

    Article  Google Scholar 

  47. Duguay AJ, Nader JW, Kiziltas A, Gardner DJ, Dagher HJ (2014) Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties. Appl Nanosci 4:279

    Article  Google Scholar 

  48. Kawauchi T, Kumaki J, Yashima E (2005) Synthesis, isolation via self-assembly, and single-molecule observation of a [60] fullerene-end-capped isotactic poly(methyl methacrylate). J Am Chem Soc 127:9950

    Article  Google Scholar 

  49. Saotome T, Kokubo K, Shirakawa S, Oshima T, Hahn HT (2011) Polymer nanocomposites reinforced with C60 fullerene: effect of hydroxylation. J Comp Mater 45(25):2595

    Article  Google Scholar 

  50. Kim J-W, Kim K-J, Park S, Jeong K-U, Lee M-H (2012) Preparation and characterizations of C60/polystyrene composite particle containing pristine C60 clusters. Bull Kor Chem Soc 33(9):2966

    Article  Google Scholar 

  51. Zhao L, Song P, Cao Z, Fang Z, Guo Z (2012) Thermal stability and rheological behaviors of high-density polyethylene/fullerene nanocomposites. J Nanomater 2012:1

    Google Scholar 

  52. Rafiee MA, Yavari F, Rafiee J, Koratkar N (2010) Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. J Nanopart Res 13:733

    Article  Google Scholar 

  53. Bai X, Yue D, Zhao S, Dong J, Yang L, Ibrahim K, Wang J, Yang S, Hao J, Hu Z, Sun B (2011) Self-construction of core–shell structure by metallofullerene-containing polymer. J Nanosci Nanotechnol 11:2244

    Article  Google Scholar 

  54. Phillips JP, Hoyle CE, Confait BS, McCluskey DM, Ahmed H, Stevenson S (2009) Synthesis, characterization, and applications of metallic nitride fullerene polymer nanocomposites. Polym Prepr 50(1):383

    Google Scholar 

  55. Chattopadhyaya M, Alam Md M, Sen S, Chakrabarti S (2012) Electrostatic spin crossover and concomitant electrically operated spin switch action in a Ti-based endohedral metallofullerene polymer. Phys Rev Lett 109:257204

    Article  Google Scholar 

  56. Neitzel I, Mochalin V, Bares JA, Carpick RW, Erdemir A, Gogotsi Y (2012) Tribological properties of nanodiamond-epoxy composites. Tribol Lett 47:195

    Article  Google Scholar 

  57. Hikov T, Pramatarova L, Kresteva N, Radeva E, Petrik P, Agocs E, Pecheva E, Presker R, Sabotinov O (2012) Study of nanocomposite layers based on polymers and nanodiamond particles: new materials for medical implants. Bulg J Phys 39:297

    Google Scholar 

  58. Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44:4415

    Article  Google Scholar 

  59. Guerra J, Herrero MA, Carrión B, Pérez-Martínez FC, Lucío M, Rubio N, Meneghetti M, Prato M, Ceña V, Vázquez E (2012) Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon 50:2832

    Article  Google Scholar 

  60. Fraczek-Szczypta A, Blazewicz S (2011) Manufacturing and physico-mechanical characterization of carbon nanohorns/polyacrylonitrile nanocomposites. J Mater Sci 46:5680

    Article  Google Scholar 

  61. Plonska-Brzezinska ME, Mazurczyk J, Palys B, Breczko J, Lapinski A, Dubis AT, Echegoyen L (2012) Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline. Chem Eur J 18:2600

    Article  Google Scholar 

  62. Kovalenko I, Bucknall DG, Yushin G (2010) Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv Funct Mater 20:3979

    Article  Google Scholar 

  63. Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Nanodiamond and onion-like carbon polymer nanocomposites. Diamond Relat Mater 16:1213

    Article  Google Scholar 

  64. Maksimenko SA, Rodionova VN, Ya Slepyan G, Karpovich VA, Shenderova O, Walsh J, Kuznetsov VL, Mazov IN, Moseenkov SI, Okotrub AV, Lambin Ph (2007) Attenuation of electromagnetic waves in onion-like carbon composites. Diamond Relat Mater 16:1231

    Google Scholar 

  65. Okamoto M, Fujigaya T, Nakashima N (2009) Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. Small 5:735

    Article  Google Scholar 

  66. Zhang W, Suhr J, Koratkar N (2006) Carbon nanotube/polycarbonate composites as multifunctional strain sensors. J Nanosci Nanotechnol 6:960

    Article  Google Scholar 

  67. Hekmatara H, Seifi M, Forooraghi K (2013) Microwave absorption property of aligned MWCNT/Fe3O4. J Magn Magn Mater 346:186

    Article  Google Scholar 

  68. Thomassin J-M, Kollar J, Caldarella G, Germain A, Jérôme R, Detrembleur C (2007) Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. J Membr Sci 303:252

    Article  Google Scholar 

  69. Sotiropoulou S, Gavalas V, Vamvakaki VV, Chaniotakis NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18:211

    Article  Google Scholar 

  70. Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv Mater 10:1091

    Article  Google Scholar 

  71. Tavasoli A, Sadagiani K, Khorashe F, Seifkordi AA, Rohaniab AA, Nakhaeipour A (2008) Cobalt supported on carbon nanotubes – a promising novel Fischer-Tropsch synthesis catalyst. Fuel Process Technol 89(5):491

    Article  Google Scholar 

  72. Li XL, Tian XL, Zhang DW, Chen XY, Liu DJ (2008) Solvothermal synthesis and characterization of nitrogen-enriched carbon-encapsulated nickel nanospheres. Materials science and engineering 151(3):220

    Google Scholar 

  73. Sunny V, Kumar DS, Mohanan P, Anantharaman MR (2010) Nickel/carbon hybrid nanostructures as microwave absorbers. Mater Lett 64(10):1130

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Science and Technology, Government of India, for granting the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banerjee, S., Sharma, R., Kar, K.K. (2017). Nanocomposites Based on Carbon Nanomaterials and Electronically Nonconducting Polymers. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_8

Download citation

Publish with us

Policies and ethics