Skip to main content

Psychopharmakotherapie – pharmakologische Grundlagen

  • Chapter
  • First Online:
Psychiatrie, Psychosomatik, Psychotherapie

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Das Verständnis der pharmakologischen Grundlagen der Psychopharmakotherapie ermöglicht es zum einen, neue Forschungsansätze auf dem Gebiet der psychiatrischen Pharmakotherapie nachzuvollziehen. Zum anderen erleichtern diese Kenntnisse für den klinisch tätigen Arzt eine adäquate und rationale Auswahl der von ihm verwendeten Pharmaka unter Einbeziehung der pharmakologischen und pharmakokinetischen Eigenschaften. Durch die Kenntnis des Wirkmechanismus und des Abbauweges des gewählten Pharmakons können darüber hinaus unerwünschte Arzneimittelwirkungen vorausgesehen und nach Möglichkeit vermieden werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Ampuero E, Rubio FJ, Falcon R et al (2010) Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience 169:98–108

    Article  CAS  PubMed  Google Scholar 

  • Benkert O, Hippius H (2015) Kompendium der Psychiatrischen Pharmakotherapie, 10. Aufl. Springer, Berlin/Heidelberg/New York/Tokio

    Google Scholar 

  • Berton O, Nestler EJ (2006) New approoaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  CAS  PubMed  Google Scholar 

  • Breimer DD (1984) Die Pharmakokinetik der Benzodiazepine. In: Kubicki S (Hrsg) Schlafstörungen in Abhängigkeit vom Lebensalter. Med. Wiss. Buchreihe der Schering AG Berlin, Bergkamen, S 13–22

    Google Scholar 

  • Breitenstein B, Brückl TM, Ising M, Müller-Myhsok B, Holsboer F, Czamara D (2015) ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 168B(4):274–283

    Article  PubMed  CAS  Google Scholar 

  • Chen ACH, Shirayama Y, Shin KH, Neve RL, Duman RS (2001) Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol Psychiatry 49:753–762

    Article  CAS  PubMed  Google Scholar 

  • Chuang D-M, Priller J (2006) Potential use of lithium in neurodegenerative disorder. In: Bauer M, Grof P, Müller-Oerlinghause B (Hrsg) Lithium in neuropsychiatry. The comprehensive guide. Informa UK, Abingdon

    Google Scholar 

  • Cooper JE, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology, 7. Aufl. Oxford University Press, Oxford/New York

    Google Scholar 

  • Couillard-Despres S, Wuertinger C, Kandasamy M et al (2009) Ageinge abolishes the effects of fluoxetine on neurogenesis fluoxetine and neurogenesis during ageing. Mol Psychiatry 14:856–864

    Article  CAS  PubMed  Google Scholar 

  • Cowen PJ (2008) Serotonin and depression: pathophysiological mechanism or marketing myth? Trends Pharmacol Sci 29(9):433–436

    Article  CAS  PubMed  Google Scholar 

  • Duman RS (2014) Pathophysiology of depression and innovative treatments: remodelling glutamatergic synaptic connections. Dialogues Clin Neurosci 16:11–27

    PubMed  PubMed Central  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Malberg J, Thorne J (1999) Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46:1181–1191

    Article  CAS  PubMed  Google Scholar 

  • Duncan GE, Johnson KB, Breese GR (1993) Topographic patterns of brain activity in response to swim stress assessment by 2-deoxyglucose uptake and expression of fos-like immunoreactivity. J Neurosci 13:3932–3934

    CAS  PubMed  Google Scholar 

  • Ebmeier KP, Donaghex C, Steele JD (2006) Recent developments and current controversies in depression. Lancet 367:153–167

    Article  PubMed  Google Scholar 

  • Eckert A, Reiff J, Müller WE (1998) Arzneimittelinteraktionen mit Antidepressiva. Psychopharmakotherapie 5:8–18

    Google Scholar 

  • Eckert A et al (2005) Stabilization of mitochondrial membrane potential and improvement of neuronal enery metabolism by Ginkgo bilobe Extrakt EGb 761. Ann N Y Acad Sci 1056:474–485

    Article  PubMed  Google Scholar 

  • Ereshefsky L, Lacombe S (1993) Pharmacological profile of risperidone. Can J Psychiatry 38(Suppl 3):80–88

    Google Scholar 

  • Erman MK (2005) Therapeutic options in the treatment of insomnia. J Clin Psychiatry 66(Suppl 9):18–23

    CAS  PubMed  Google Scholar 

  • Fone KCF, Nutt DJ (2005) Stimulants: use and abuse in the treatment of attention deficit hyperactivity disorder. Curr Opin Pharmacol 5:87–93

    Article  CAS  PubMed  Google Scholar 

  • Frazer A (1997) Antidepressants. J Clin Psychiatry 58(Suppl 6):9–25

    CAS  PubMed  Google Scholar 

  • Fuchs E, Simon M, Schmelting B (2006) Pharmacology of a new antidepressant: benefit of the implication of the melatonergic system. Int Clin Psychopharmacol 21(suppl 1):S17–S20

    Article  PubMed  Google Scholar 

  • Garbutt JC, West SL, Garey TS, Lohr KN, Crews FT (1999) Pharmacological treatment of alcohol dependence. JAMA 281:1318–1325

    Article  CAS  PubMed  Google Scholar 

  • Gura T (2008) Hope in Alzheimer’s fight emerges from unexpected place. Nat Med 14(9):894

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessions form the Alzheimer’s amyloid β-peptide. Mol Cell Biol 8:101–112

    CAS  Google Scholar 

  • Haefely W, Pöldinger W, Wider F (1983) Tranquilizer und Hypnotika: Grundlagen und Therapie. In: Langer G, Heimann H (Hrsg) Psychopharmaka, Grundlagen und Therapie. Springer, Wien/New York, S 301–346

    Chapter  Google Scholar 

  • Hauptmann S et al (2006) Mitochondrial dysfunction insporadic and genetic Alzheimer’s disease. Exp Gerontol 41:668–673

    Article  CAS  PubMed  Google Scholar 

  • Henn FA, Vollmayr B (2004) Neurogenesis and depression. Etiology or epiphenomenon? Biol Psychiatry 56:146–150

    Article  PubMed  Google Scholar 

  • Herdegen T, Tölle TR, Bähr M (Hrsg) (1997) Klinische Neurobiologie. Spektrum, Heidelberg

    Google Scholar 

  • Holsboer F, Gründer G, Benkert O (Hrsg) (2008) Handbuch der Psychopharmakotherapie. Springer, Berlin

    Google Scholar 

  • Hope BT, Kelz M, Duman RS, Nestler EJ (1994) Chronic electroconvulsive seizure (ECS) treatment results in expression of a long-lasting AP-1 complex in brain with altered composition and characteristics. J Neurosci 14:4318–4328

    CAS  PubMed  Google Scholar 

  • Jope RS, Williams MB (1994) Lithium and brain signal transduction systems. Biochem Pharmacol 47:429–441

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P (2000) Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J Psychiatry Neurosci 25:161–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine D2 receptors explain the action of atypical antipsychotics? a new hypothesis. Am J Psychiatry 158:360–369

    Article  CAS  PubMed  Google Scholar 

  • Keck PE, McElroy S (2005) Antieepileptic drugs. In: Schatzberg AF, Nemeroff CB (Hrsg) Textbuch of psychopharmacology, 2. Aufl. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Keil U et al (2006a) Piracetam improves mitochondrial dysfunction following oxidative stress. Br J Pharmacol 147:199–208

    Article  CAS  PubMed  Google Scholar 

  • Keil U et al (2006b) Mitochondrial dysfunction induced by disease relevant AβPP and tau protein mutantions. J Alzheimers Dis 9:139–146

    Article  PubMed  Google Scholar 

  • Kielholz P (1971) Diagnose und Therapie der Depression für den Praktiker, 3. Aufl. Lehmann, München

    Book  Google Scholar 

  • Klotz U, Laux G (1996) Tranquillantien Therapeutischer Einsatz und Pharmakologie, 2. Aufl. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Lane RM (1996) Pharmacokinetic drug interaction potential of selective serotonin reuptake inhibitors. Int Clin Psychopharmacol 11(Suppl 5):31–61

    Article  PubMed  Google Scholar 

  • Laux G, Dietmaier O (2012) Praktische Psychopharmakotherapie, 6. Aufl. Urban & Fischer, München

    Google Scholar 

  • Lenox RH, Manji HK (2005) Lithium. In: Schatzberg AF, Nemeroff CB (Hrsg) Textbook of psychopharmacology, 2. Aufl. American Psychiatric Press, Washington, DC/London

    Google Scholar 

  • Leonard BE (1995) Mechanisms of action of antidepressants. CNS Drugs 4(Suppl 1):1–12

    Article  CAS  Google Scholar 

  • Leonard BE (1996) New approaches to the treatment of depression. J Clin Psychiatry 57(Suppl 4):26–33

    CAS  PubMed  Google Scholar 

  • Leuner K, Müller WE (2007) Dopamine in the prefrontal cortex and its different modulation by conventionaland atypical antipsychotics. Pharmacopsychiatry 40(Suppl 1):17–26

    Article  CAS  Google Scholar 

  • Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42(1):59–98

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Blendy JA (2005) Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 12:631–638

    Article  CAS  Google Scholar 

  • Malberg JE et al (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    CAS  PubMed  Google Scholar 

  • Manji HK, Moore GJ, Chen G (2000) Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vitro: a role for neurotrophic and neuroprotective effects in manic depressive illness. J Clin Psychiatry 61(Suppl 9):82–96

    CAS  PubMed  Google Scholar 

  • Marchetti C, Tafi E, Middei S et al (2010) Synaptic adaptations of CA1 pyramidal neurons induced by a highly effective combinational antidepressant therapy. Biol Psychiatry 67(2):146–154

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, Fuchs E (2010) The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry 15:237–249

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S et al (2003) Recent advances in the neurobiology of schizophrenia. Mol Interv 3(1):27–29

    Article  PubMed  Google Scholar 

  • Montgomery SA (1997) Is there a role for a pure noradrenergic drug in the treatment of depression? Eur Neuropsychopharmacol 7(Suppl 1):3–9

    Article  Google Scholar 

  • Morinobu S, Nibuya M, Duman RS (1995) Chronic antidepressant treatment down-regulates the induction of c-fos mRNA in response to acute stress in rat frontal cortex. Neuropschychopharmacology 12:221–228

    Article  CAS  Google Scholar 

  • Müller WE (1991) Wirkungsmechanismus niedrigdosierter Neuroleptika bei Angst und Depression. In: Pöldinger W (Hrsg) Niedrigdosierte Neuroleptika bei ängstlich-depressiven Zustandsbildern und psychosomatischen Erkrankungen. Braun, Karlsruhe, S 24–38

    Google Scholar 

  • Müller WE (1995) Pharmacology of the GABAergic benzodiazepine system. In: Kales A (Hrsg) The pharmacology of sleep. Handbook of experimental pharmacology. Springer, Berlin/Heidelberg/New York/Tokio, S 211–242

    Chapter  Google Scholar 

  • Müller WE (1997a) Wie wirken die neueren Antidepressiva? Psychopharmakotherapie 4:2–5

    Google Scholar 

  • Müller WE (1997b) Besonderheiten der Psychopharmakotherapie im Alter. In: Förstl H (Hrsg) Lehrbuch der Gerontopsychiatrie. Enke, Stuttgart, S 141–151

    Google Scholar 

  • Müller WE (1998a) Pharmakologie und Neurobiochemie. In: Riederer P, Laux G, Pöldinger W (Hrsg) Neuro-Psychopharmaka. Ein Therapiehandbuch. Springer, Wien/New York, S 428–438

    Google Scholar 

  • Müller WE (1998b) Rezeptorprofile erklären therapeutische und unerwünschte Wirkungen typischer und atypischer Neuroleptika. In: Rüther E, Bandelow B (Hrsg) Therapie mit klassischen Neuroleptika, heute und morgen. Springer, Berlin/Heidelberg/New York/Tokio, S 3–20

    Chapter  Google Scholar 

  • Müller WE (2002) Partieller D2-Agonismus und dopaminerge Stabilisierung durch Aripiprazol. Psychopharmakotherapie 9(4):120–127

    Google Scholar 

  • Müller WE (2003) Current St. John’s wort research from mode of action to clinical efficacy. Pharmacol Res 47:101–109

    Article  PubMed  Google Scholar 

  • Müller WE (2006) Entwicklungsperspektiven in der Psychopharmakologie. Die Psychiatrie 3:135–144

    Google Scholar 

  • Müller WE (2013) Pharmakologie und Pharmakokinetik der in Deutschland gebräuchlichen Substanzen zur Behandlung der Alkoholabhängigkeit. Psychopharmakotherapie 20:209–219

    Google Scholar 

  • Müller WE (2014) Therapeutische Anwendung von Aripiprazol-Depot. Psychopharmakotherapie 21:97–105

    Google Scholar 

  • Müller WE (2015) Antidepressiva und kognitive Dysfunktion: die Rolle von Vortioxetin. Psychopharmakotherapie 22:177–188

    Google Scholar 

  • Müller WE, Eckert A (1997) Pharmakodynamische Grundlagen der Therapie mit spezifischen Serotonin-Wiederaufnahmehemmern. Psychopharmakotherapie 4(Suppl 7):2–8

    Google Scholar 

  • Müller WE, Mutschler E, Riederer P (1995) Noncompetitive NMDA receptor antagonists with fast open-channel blocking kinetics and strong voltage-dependency as potential therapeutic agents for Alzheimer’s dementia. Pharmacopsychiatry 28:113–124

    Article  PubMed  Google Scholar 

  • Müller WE, Eckert A, Hartmann H et al (1996) Zur Kalziumhypothese der Hirnalterung. Nervenarzt 67:15–24

    PubMed  Google Scholar 

  • Mutschler J, Diehl A, Vollmert C et al (2008) Recent results in relaps prevention of alcoholism with Disulfiram. Neuropsychiatr 22:243–251

    PubMed  Google Scholar 

  • Nebert DW, Nelson DR, Coon MJ et al (1991) The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol 10:1–14

    Article  CAS  PubMed  Google Scholar 

  • Nemeroff CB, Kinkead B, Goldstein J (2002) Quetiapine: preclinical studies, pharmacokinetics, drug interactions, and dosing. J Clin Psychiatry 63(Suppl 13):5–11

    CAS  PubMed  Google Scholar 

  • O’Brain CP (2005) Anticraving medications for relapse prevention: a possible new class of psychoactive medications. Am J Psychiatry 162:1423–1431

    Article  Google Scholar 

  • O’Brien FE, Dinan TG, Griffin BT, Cryan JF (2012) Interactions between antidepressants and P-glycoprotein at the blood–brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 165(2):289–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otte C (2014) Depression und kognitive Dysfunktion. Psychopharmakotherapie 21:40–49

    Google Scholar 

  • Paioni R, Waldmeier A, Delini-Stula A et al (1983) Antidepressiva: Grundlagen und Therapie. In: Langer G, Heimann H (Hrsg) Psychopharmaka. Grundlagen und Therapie. Springer, Wien/New York, S 57–159

    Chapter  Google Scholar 

  • Perry PJ, Alexander B, Liskow BI (1997) Psychotropic drug handbook. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Pittenger C, Duman R (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109

    Article  CAS  PubMed  Google Scholar 

  • Preskorn SH (1996) Clinical pharmacology of selective serotonin reuptake inhibitors. Professional Communications, Caddo

    Google Scholar 

  • Preskorn SH, Magnus RD (1994) Inhibition of the hepatic P450 isoenzymes by serotonin selective reuptake inhibitors: in vitro and in vivo findings and their implications for patient care. Psychopharmacol Bull 30:251–259

    CAS  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J et al (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Rappley MD (2005) Attention deficit-hyperactivity disorder. N Engl J Med 352(2):165–173

    Article  CAS  PubMed  Google Scholar 

  • Reynolds PG (1996) The importance of dopamine D4 receptors in the action and development of antipsychotic agents. Drugs 51:7–11

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Laux G, Pöldinger W (Hrsg) (2002–2010) Neuro-Psychopharmaka. Ein Therapie-Handbuch, 2. Aufl. Springer, Wien/New York

    Google Scholar 

  • Riesenman C (1995) Antidepressant drug interactions and the cytochrome P450 system: a critical appraisal. Pharmacotherapy 15:84S–99S

    CAS  PubMed  Google Scholar 

  • Rollema H, Chambers LK, Coe JW, Glowa J et al (2007) Pharmacological profile of the α4β2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52:985–994

    Article  CAS  PubMed  Google Scholar 

  • Santarelli L et al (2003) Requirement of hippocampal neurogenesis for the behavioural effects of antidepressants. Science 301:805–809

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (2004) Is impaired neurogenesis relevant to the affective symptoms of depression? Biol Psychiatry 56:137–139

    Article  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci 5:1222–1227

    CAS  PubMed  Google Scholar 

  • Schatzberg AF, Nemeroff CB (2013) Textbook of psychopharmacology, 3. Aufl. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Schatzberg AF, Cole JO, DeBattista C (2010) Manual of clinical psychopharmacology, 7. Aufl. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Schüssel K, Müller WE (2007) Neue andere Wirkmechanismen. In: Volk HP, Gleiter CH (Hrsg) Antidementiva. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  CAS  PubMed  Google Scholar 

  • Seeman P (2005) An update of fast-off dopamine D2 atypical antipsychotics. Am J Psychiatry 162:1984–1985

    Article  PubMed  Google Scholar 

  • Sills GJ (2006) The mechanisms of action of gabapentin und pregabalin. Curr Opin Pharmacol 6:108–113

    Article  CAS  PubMed  Google Scholar 

  • Smith DF (1986) Wirkung von Lithium auf die Bewegungsaktivität von Versuchstieren. In: Müller-Oerlinghausen B, Greil W (Hrsg) Die Lithiumtherapie. Nutzen, Risiken, Alternativen. Springer, Berlin/Heidelberg/New York/Tokio, S 51–59

    Chapter  Google Scholar 

  • Soares JC, Mann JJ (1997) The anatomy of mood disorders – review of structural neuroimaging studies. Biol Psychiatry 41:86–106

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff P, Giros B, Martres MP et al (1990) Molecular cloning and characterization of novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  CAS  PubMed  Google Scholar 

  • Stassen HH, Angst J, Delini-Stula A (1996) Delayed onset action of antidepressant drugs? Survey of results of Zurich meta-analyses. Pharmacopsychiatry 29:87–96

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Davis JM, Leucht S, Pilowsky LR (2009) Cortical dopamine D2/D3 receptors are a common site of action for antipsychotic drugs – an original patient data meta-analysis of the SPECT and PET in vivo receptor imaging literature. Schiziophr Bull 35:789–797

    Article  Google Scholar 

  • Stroup ST et al (2006) Clinical trials for antipsychotic drugs: design conventions, dilemmas and innovations. Nat Rev Drug Discov 5:133–146

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265–S279

    Article  PubMed  CAS  Google Scholar 

  • Torres G, Horowitz JM, Laflamme N et al (1998) Fluoxetine induces the transcription of genes encoding c-fos, corticotropin-releasing factor and its type 1 receptor in rat brain. Neuroscience 87:463–477

    Article  CAS  PubMed  Google Scholar 

  • Vaidya VA, Siuciak J, Du F, Duman RS (1999) Mossy fiber sprouting and synaptic reorganization induced by chronic administration of electroconvulsive seizure: role of BDNF. Neuroscience 89:157–166

    Article  CAS  PubMed  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC et al (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    Article  PubMed  Google Scholar 

  • Volkow ND, Swanson JM (2003) Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry 160(11):1909–1918

    Article  PubMed  Google Scholar 

  • Wadenbert MLG, Soliman A, Vanderspek SC, Kapur S (2001) Dopamine D2-receptor occupancy is a common mechanism underlying animal models of antipsychotics and their clinical effects. Neuropsychopharmacology 25:633–641

    Article  Google Scholar 

  • Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS (1992) Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 222:157–162

    Article  CAS  PubMed  Google Scholar 

  • Wedekind D, Bandelow B, Degner D (2005) Die α2δ-Untereinheit der spannungsabhängigen Kalziumkanäle. Nervenarzt 76:888–892

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83:1–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter E. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, W.E., Eckert, A. (2017). Psychopharmakotherapie – pharmakologische Grundlagen. In: Möller, HJ., Laux, G., Kapfhammer, HP. (eds) Psychiatrie, Psychosomatik, Psychotherapie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49295-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49295-6_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49293-2

  • Online ISBN: 978-3-662-49295-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics