Skip to main content

Energy Storage by Sensible Heat for Buildings

  • Living reference work entry
  • First Online:
Handbook of Energy Systems in Green Buildings
  • 500 Accesses

Abstract

This chapter presents a state-of-the-art review on the available thermal energy storage (TES) technologies by sensible heat for building applications. After a brief introduction, the basic principles and the required features for desired sensible heat storage are summarized. Then, material candidates and recent advances on sensible heat or cold storage adapted for building application are discussed, each with its own characteristics, advantages, and limitations. A large section of the chapter is devoted to the sensible TES technologies for buildings, both for short-term (daily) and for long-term (seasonal) storage. Each technology is described in detail including different aspects: basic principle, development status, performance and costs, potential and barriers, today’s R&D activity focus, etc. Comparisons on the advantages and limitations between different TES technologies are also made. Finally, conclusions and future directions are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hoes P, Trcka M, Hensen JLM, Hoekstra Bonnema B (2011) Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage. Energy Convers Manag 52(6):2442–2447

    Article  Google Scholar 

  2. Buonomano A, Calise F, Palombo A, Vicidomini M (2015) Energy and economic analysis of geothermal-solar trigeneration systems: A case study for a hotel building in Ischia. Appl Energy 138:224–241

    Article  Google Scholar 

  3. Tsoutsou S, Infante Ferreira C, Krieg J, Ezzahiri M (2014) Building integration of concentrating solar systems for heating applications. Appl Therm Eng 70(1):647–654

    Article  Google Scholar 

  4. Radcoind. http://www.radcoind.com/industrial-energy/

  5. Therminol. https://www.therminol.com/french

  6. Duratherm. https://durathermfluids.com/heat-transfer-fluid/

  7. Dow. http://www.dow.com/heattrans/products/

  8. Tatsidjodoung P, Le Pierrès N, Luo L (2013) A review of potential materials for thermal energy storage in building applications. Renew Sust Energ Rev 18:327–349

    Article  Google Scholar 

  9. Gutierrez A, Miró L, Gil A, Rodríguez-Aseguinolaza J, Barreneche C, Calvet N, Py X, Inés Fernández A, Grágeda M, Ushak S, Cabeza LF (2016) Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials. Renew Sust Energ Rev 59:763–783

    Article  Google Scholar 

  10. Navarro ME, Martínez M, Gil A, Fernández AI, Cabeza LF, Olives R, Py X (2012) Selection and characterization of recycled materials for sensible thermal energy storage. Sol Energy Mater Sol Cells 107:131–135

    Article  Google Scholar 

  11. Py X, Calvet N, Olives R, Meffre A, Echegut P, Bessada C, Veron E, Ory S (2011) Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants. J Solar Energy Eng Trans ASME 133(3):Art. no. 031008

    Article  Google Scholar 

  12. Jeanjean A, Olives R, Py X (2013) Selection criteria of thermal mass materials for low-energy building construction applied to conventional and alternative materials. Energ Buildings 63:36–48

    Article  Google Scholar 

  13. Ortega I, Faik A, Gil A, Rodríguez-Aseguinolaza J, D'Aguanno B (2015) Thermo-physical Properties of a Steel-making by-product to be used as Thermal Energy Storage Material in a Packed-bed System. Energy Procedia 69:968–977

    Article  Google Scholar 

  14. Agalit H, Zari N, Maalmi M, Maaroufi M (2015) Numerical investigations of high temperature packed bed TES systems used in hybrid solar tower power plants. Sol Energy 122:603–616

    Article  Google Scholar 

  15. Calvet N, Dejean G, Unamunzaga L, Py X (2013) Waste from metallurgic industry: A sustainable high-temperature thermal energy storage material for concentrated solar power. ASME 2013 7th Internatinal Conference on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, ES 2013, art. no. V001T03A012

    Google Scholar 

  16. Ghosh J, Mondal AK, Singh N, Das SK (2011) Evaluation of iron ore tailings for the production of building materials. Ind Ceram 31(2):115–119

    Google Scholar 

  17. Miró L, Navarro ME, Suresh P, Gil A, Fernández AI, Cabeza LF (2014) Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES). Appl Energy 113:1261–1268

    Article  Google Scholar 

  18. Osman K, Al Khaireed SMN, Ariffin MK, Senawi MY (2008) Dynamic modeling of stratification for chilled water storage tank. Energy Convers Manag 49(11):3270–3273

    Article  Google Scholar 

  19. Yan C, Shi W, Li X, Zhao Y (2016) Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage. Appl Energy 171:1–11

    Article  Google Scholar 

  20. Chan ALS, Chow TT, Fong SKF (2006) Lin, J.Z. Performance evaluation of district cooling plant with ice storage. Energy 31(14):2414–2426

    Article  Google Scholar 

  21. Sebzali MJ, Rubini PA (2006) Analysis of ice cool thermal storage for a clinic building in Kuwait. Energy Convers Manag 47(18–19):3417–3434

    Article  Google Scholar 

  22. Hamada Y, Kubota H, Nakamura M, Kudo K, Hashimoto Y (2010) Experiments and evaluation of a mobile high-density snow storage system. Energ Buildings 42(2):178–182

    Article  Google Scholar 

  23. Bahadori MN (1985) Natural production, storage, and utilization of ice in deep ponds for summer air conditioning. Sol Energy 34(2):143–149

    Article  Google Scholar 

  24. Kirkpatrick DL, Masoero M, Rabl A, Roedder CE, Socolow RH, Taylor TB (1985) The ice pond-production and seasonal storage of ice for cooling. Sol Energy 35(5):435–445

    Article  Google Scholar 

  25. Mastouri H, Benhamou B, Hamdi H (2013) Pebbles bed thermal storage for heating and cooling of buildings. Energy Procedia 42:761–764

    Article  Google Scholar 

  26. Ashby M (2005) Materials Selection in Mechanical Design, 3rd edn. Elsevier, Oxford

    Google Scholar 

  27. Fernandez AI, Martnez M, Segarra M, Martorell I, Cabeza LF (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energy Mater Sol Cells 94(10):1723–1729

    Article  Google Scholar 

  28. Sateikis I (2002) Determination of the amount of thermal energy in the tanks of buildings heating systems. Energ Buildings 34(4):357–361

    Article  Google Scholar 

  29. Rasoul Asaee S, Ismet Ugursal V, Beausoleil-Morrison I (2017) Techno-economic feasibility evaluation of air to water heat pump retrofit in the Canadian housing stock. Appl Therm Eng 111:936–949

    Article  Google Scholar 

  30. Votsis PP, Tassou SA, Wilson DR, Marquand CJ (1988) Experimental and Theoretical Investigation of Mixed and Stratified Hot Water Storage Tanks. Proc Inst Mech Eng C J Mech Eng Sci 202(3):187–193

    Article  Google Scholar 

  31. Campos Celador A, Odriozola M, Sala JM (2011) Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants. Energy Convers Manag 52(8–9):3018–3026

    Article  Google Scholar 

  32. Mongibello L, Capezzuto M, Graditi G (2014) Technical and cost analyses of two different heat storage systems for residential micro-CHP plants. Appl Therm Eng 71(2):636–642

    Article  Google Scholar 

  33. Perea E, Ruiz N, Cobelo I, Lizuain Z, Carrascal A (2016) A novel optimization algorithm for efficient economic dispatch of Combined Heat and Power devices. Energ Buildings 111:507–514

    Article  Google Scholar 

  34. Rosato A, Sibilio S, Scorpio M (2014) Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part II: Environmental and economic analyses. Energy Convers Manag 79:749–770

    Article  Google Scholar 

  35. Thiers S, Aoun B, Peuportier B (2010) Experimental characterization, modeling and simulation of a wood pellet micro-combined heat and power unit used as a heat source for a residential building. Energ Buildings 42(6):896–903

    Article  Google Scholar 

  36. Calise F, d’Accadia MD, Vanoli L (2012) Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT). Energy Convers Manag 60:214–225

    Article  Google Scholar 

  37. Calise F, d'Accadia MD, Palombo A, Vanoli L (2013) Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors. Energy 61:72–86

    Article  Google Scholar 

  38. Eicker U, Dalibard A (2011) Photovoltaic–thermal collectors for night radiative cooling of buildings. Sol Energy 85(7):1322–1335

    Article  Google Scholar 

  39. Mammoli A, Vorobieff P, Barsun H, Burnett R, Fisher D (2010) Energetic, economic and environmental performance of a solar-thermal-assisted HVAC system. Energ Buildings 42(9):1524–1535

    Article  Google Scholar 

  40. Rosiek S, Batlles FJ (2011) Performance study of solar-assisted air-conditioning system provided with storage tanks using artificial neural networks. Int J Refrig 34(6):1446–1454

    Article  Google Scholar 

  41. Lazaar M, Bouadila S, Kooli S, Farhat A (2015) Comparative study of conventional and solar heating systems under tunnel Tunisian greenhouses: Thermal performance and economic analysis. Sol Energy 120:620–635

    Article  Google Scholar 

  42. Lohrenz E, Almeida S (2013) Ground-Coupled Heat Pump And Energy Storage. ASHRAE J 55(4):14–22

    Google Scholar 

  43. Calise F (2011) Design of a hybrid polygeneration system with solar collectors and a Solid Oxide Fuel Cell: Dynamic simulation and economic assessment. Int J Hydrog Energy 36(10):6128–6150

    Article  Google Scholar 

  44. Nanaeda K, Mueller F, Brouwer J, Samuelsen S (2009) Dynamic modeling of a solid oxide fuel cell combined heat and power system with thermal storage for commercial building applications, Proceedings of ASME. Seventh International Fuel Cell Science, Engineering and Technology Conference FuelCell2009, 8–10 June 2009, Newport Beach

    Google Scholar 

  45. Pisello AL, Petrozzi A, Castaldo VL, Cotana F (2016) On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study. Appl Energy 162:1313–1322

    Article  Google Scholar 

  46. Zhao Y, Lu Y, Yan C, Wang S (2015) MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages. Energ Buildings 86:415–426

    Article  Google Scholar 

  47. Balghouthi M, Chahbani MH, Guizani A (2012) Investigation of a solar cooling installation in Tunisia. Appl Energy 98:138–148

    Article  Google Scholar 

  48. Baniyounes AM, Rasul MG, Khan MMK (2013) Assessment of solar assisted air conditioning in Central Queensland's subtropical climate, Australia. Renew Energy 50:334–341

    Article  Google Scholar 

  49. Fong KF, Lee CK (2015) Investigation of separate or integrated provision of solar cooling and heating for use in typical low-rise residential building in subtropical Hong Kong. Renew Energy 75:847–855

    Article  Google Scholar 

  50. Reda F, Viot M, Sipilä K, Helm M (2016) Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country. Appl Energy 166:27–43

    Article  Google Scholar 

  51. Syed A, Izquierdo M, Rodríguez P, Maidment G, Missenden J, Lecuona A, Tozer R (2005) A novel experimental investigation of a solar cooling system in Madrid. Int J Refrig 28(6):859–871

    Article  Google Scholar 

  52. He W, Zhou J, Hou J, Chen C, Ji J (2013) Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar. Appl Energy 107:89–97

    Article  Google Scholar 

  53. Roth (2013) Thermotank Quadroline: the new generation of plastic storage tanks. http://www.roth-werke.de/en/files/WS_Thermotank_2013_EN.pdf

  54. Koehl M, Saile S, Piekarczyk A, Fischer S (2014) Task 39 Exhibition – Assembly of Polymeric Components for a New Generation of Solar Thermal Energy Systems. Energy Procedia 48:130–136

    Article  Google Scholar 

  55. Choudhury C, Garg HP (1992) Thermal performance of a solar hybrid domestic hot water system. Energy 17(7):703–711

    Article  Google Scholar 

  56. Zauner C, Stift F, Hartl M, Themessl T, Manglberger S, Simetzberger A (2014) Energy Labeling and Advanced Insulation for Thermal Energy Storages in Solar Applications. Energy Procedia 57:2352–2359

    Article  Google Scholar 

  57. Kamiuto K, Miyamoto T, Saitoh S (1999) Thermal characteristics of a solar tank with aerogel surface insulation. Appl Energy 62(3):113–123

    Article  Google Scholar 

  58. Fuchs B, Hofbeck K, Faulstich M (2012) Vacuum insulation panels – A promising solution for high insulated tanks. Energy Procedia 30:424–427

    Article  Google Scholar 

  59. Ghaddar NK (1994) Stratified storage tank influence on performance of solar water heating system tested in Beirut. Renew Energy 4(8):911–925

    Article  Google Scholar 

  60. Eames PC, Norton B (1998) The effect of tank geometry on thermally stratified sensible heat storage subject to low Reynolds number flows. Int J Heat Mass Transf 41(14):2131–2142

    Article  Google Scholar 

  61. Njoku HO, Ekechukwu OV, Onyegegbu SO (2016) Comparison of energy, exergy and entropy generation-based criteria for evaluating stratified thermal store performances. Energ Buildings 124:141–152

    Article  Google Scholar 

  62. Al-Najem NM, El-Refaee MM (1997) A numerical study for the prediction of turbulent mixing factor in thermal storage tanks. Appl Therm Eng 17(12):1173–1181

    Article  Google Scholar 

  63. Furbo S, Andersen E, Thür A, Shah LJ, Andersen KD (2005) Performance improvement by discharge from different levels in solar storage tanks. Sol Energy 79(5):431–439

    Article  Google Scholar 

  64. Lavan Z, Thompson J (1977) Experimental study of thermally stratified hot water storage tanks. Sol Energy 19(5):519–524

    Article  Google Scholar 

  65. Li S, Zhang Y, Li Y, Zhang X (2014) Experimental study of inlet structure on the discharging performance of a solar water storage tank. Energ Buildings 70:490–496

    Article  Google Scholar 

  66. Zachár A, Farkas I, Szlivka F (2003) Numerical analyses of the impact of plates for thermal stratification inside a storage tank with upper and lower inlet flows. Sol Energy 74(4):287–302

    Article  Google Scholar 

  67. Knudsen S, Furbo S (2004) Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems. Appl Energy 78(3):257–272

    Article  Google Scholar 

  68. Rosen MA (2001) The exergy of stratified thermal energy storages. Sol Energy 71(3):173–185

    Article  Google Scholar 

  69. van Berkel J, Rindt CCM, van Steenhoven AA (2002) Thermocline dynamics in a thermally stratified store. Int J Heat Mass Transf 45(2):343–356

    Article  Google Scholar 

  70. Altuntop N, Arslan M, Ozceyhan V, Kanoglu M (2005) Effect of obstacles on thermal stratification in hot water storage tanks. Appl Therm Eng 25(14–15):2285–2298

    Article  Google Scholar 

  71. Shah LJ, Furbo S (2003) Entrance effects in solar storage tanks. Sol Energy 75(4):337–348

    Article  Google Scholar 

  72. Yee CK, Lai FC (2001) Effects of a porous manifold on thermal stratification in a liquid storage tank. Sol Energy 71(4):241–254

    Article  Google Scholar 

  73. Han YM, Wang RZ, Dai YJ (2009) Thermal stratification within the water tank. Renew Sust Energ Rev 13(5):1014–1026

    Article  Google Scholar 

  74. Swiatek M, Fraisse G, Pailha M (2015) Stratification enhancement for an integrated collector storage solar water heater (ICSSWH). Energ Buildings 106:35–43

    Article  Google Scholar 

  75. Garg HP, Sharma VK, Mahajan RB, Bhargave AK (1985) Experimental study of an inexpensive solar collector cum storage system for agricultural uses. Sol Energy 35(4):321–331

    Article  Google Scholar 

  76. Hamdan MA (1998) Investigation of an inexpensive solar collector storage system. Energy Convers Manag 39(5–60):415–420

    Article  Google Scholar 

  77. Joudi KA, Dhaidan NS (2001) Application of solar assisted heating and desiccant cooling systems for a domestic building. Energy Convers Manag 42(8):995–1022

    Article  Google Scholar 

  78. Singh PL, Deshpandey SD, Jena PC (2015) Thermal performance of packed bed heat storage system for solar air heaters. Energy Sustain Dev 29:112–117

    Article  Google Scholar 

  79. Michelson E, Shitzer A (1986) Is there a need for a rock bed store? Simulation and optimization of solar air heating systems for offices with large thermal capacity walls. Sol Energy 36(2):99–114

    Article  Google Scholar 

  80. Singh H, Saini RP, Saini JS (2010) A review on packed bed solar energy storage systems. Renew Sust Energ Rev 14(3):1059–1069

    Article  MathSciNet  Google Scholar 

  81. Sorour MM (1988) Performance of a small sensible heat energy storage unit. Energy Convers Manag 28(3):211–217

    Article  Google Scholar 

  82. Ammar ASA, Ghoneim AA (1991) Optimization of a sensible heat storage unit packed with spheres of a local material. Renew Energy 1(1):91–95

    Article  Google Scholar 

  83. Sagara K, Nakahara N (1991) Thermal performance and pressure drop of rock beds with large storage materials. Sol Energy 47(3):157–163

    Article  Google Scholar 

  84. Audi MS (1992) Experimental study of a solar space heating model using Jordanian rocks for storage. Energy Convers Manag 33(9):833–842

    Article  Google Scholar 

  85. Crandall DM, Thacher EF (2004) Segmented thermal storage. Sol Energy 77(4):435–440

    Article  Google Scholar 

  86. Choudhury C, Garg HP (1995) Integrated rock bed heat exchanger-cum-storage unit for residential-cum-water heating. Energy Convers Manag 36(10):999–1006

    Article  Google Scholar 

  87. Al-Juwayhel F, El-Refaee MM (1998) Thermal performance of a combined packed bed–solar pond system—a numerical study. Appl Therm Eng 18(12):1207–1223

    Article  Google Scholar 

  88. Ogoli DM (2003) Predicting indoor temperatures in closed buildings with high thermal mass. Energ Buildings 35(9):851–862

    Article  Google Scholar 

  89. Reddy TA, Norford LK, Kempton W (1991) Shaving residential air-conditioner electricity peaks by intelligent use of the building thermal mass. Energy 16(7):1001–1010

    Article  Google Scholar 

  90. Li X, Wen J, Malkawi A (2016) An operation optimization and decision framework for a building cluster with distributed energy systems. Appl Energy 178:98–109

    Article  Google Scholar 

  91. Hacker JN, De Saulles TP, Minson AJ, Holmes MJ (2008) Embodied and operational carbon dioxide emissions from housing: A case study on the effects of thermal mass and climate change. Energ Buildings 40(3):375–384

    Article  Google Scholar 

  92. Ip K, Miller A (2009) Thermal behaviour of an earth-sheltered autonomous building – the Brighton Earthship. Renew Energy 34(9):2037–2043

    Article  Google Scholar 

  93. Akbari H, Samano D, Mertol A, Bauman F, Kammerud R (1986) The effect of variations in convection coefficients on thermal energy storage in buildings Part I - Interior partition walls. Energ Buildings 9(3):195–211

    Article  Google Scholar 

  94. Akbari H, Samano D, Mertol A, Bauman F, Kammerud R (1987) The effect of variations in convection coefficients on thermal energy storage in buildings Part II – Exterior massive walls and simulations. Energ Buildings 10(1):29–47

    Article  Google Scholar 

  95. Yam J, Li Y, Zheng Z (2003) Nonlinear coupling between thermal mass and natural ventilation in buildings. Int J Heat Mass Transf 46(7):1251–1264

    Article  Google Scholar 

  96. Ma P, Wang LS (2012) Effective heat capacity of interior planar thermal mass (iPTM) subject to periodic heating and cooling. Energ Buildings 47:44–52

    Article  Google Scholar 

  97. Li W, Xu P, Wang H, Lu X (2016) A new method for calculating the thermal effects of irregular internal mass in buildings under demand response. Energ Buildings 130:761–772

    Article  Google Scholar 

  98. Raftery P, Lee E, Webster T, Hoyt T, Bauman F (2014) Effects of furniture and contents on peak cooling load. Energ Buildings 85:445–457

    Article  Google Scholar 

  99. Marsh J (2010) Context and future climate: a single house case study. In: Proceedings of Sustainable Energy Technologies 2010, Shanghai

    Google Scholar 

  100. Henze GP, Pfafferott J, Herkel S, Felsmann C (2007) Impact of adaptive comfort criteria and heat waves on optimal building thermal mass control. Energ Buildings 39(2):221–235

    Article  Google Scholar 

  101. Lee K, Braun JE (2008) Model-based demand-limiting control of building thermal mass. Build Environ 43(10):1633–1646

    Article  Google Scholar 

  102. Li X, Malkawi A (2016) Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions. Energy 112:1194–1206

    Article  Google Scholar 

  103. Le Dréau J, Heiselberg P (2016) Energy flexibility of residential buildings using short term heat storage in the thermal mass. Energy 111:991–1002

    Article  Google Scholar 

  104. Hoes P, Hensen JLM (2016) The potential of lightweight low-energy houses with hybrid adaptable thermal storage: Comparing the performance of promising concepts. Energ Buildings 110:79–93

    Article  Google Scholar 

  105. Johra H, Heiselberg P (2017) Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review. Renew Sust Energ Rev 69:19–32

    Article  Google Scholar 

  106. Rhee KN, Kim KW (2015) A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment. Build Environ 91:166–190

    Article  Google Scholar 

  107. Bansal NK (1998) India, Characteristic parameters of a hypocaust construction. Build Environ 34(3):305–318

    Article  Google Scholar 

  108. Zhuang Z, Li Y, Chen B (2009) Thermal storage performance analysis on Chinese kangs. Energ Buildings 41(4):452–459

    Article  Google Scholar 

  109. Zhuang Z, Li Y, Chen B, Guo J (2009) Chinese kang as a domestic heating system in rural northern China—A review. Energ Buildings 41(1):111–119

    Article  Google Scholar 

  110. Zhou G, He J (2015) Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl Energy 138:648–660

    Article  Google Scholar 

  111. Chu WK, Kim MS, Lee KT, Bhandari B, Lee GY, Yoon HS, Kim YS, Park JI, Bilegt E, Lee JY, Song JH, Park GH, Bhandari P, Lee CS, Song C, Ahn SH (2017) Design and performance evaluation of Korean traditional heating system—Ondol: Case study of Nepal. Energ Buildings 138:406–414

    Article  Google Scholar 

  112. Krzaczek M, Kowalczuk Z (2011) Thermal Barrier as a technique of indirect heating and cooling for residential buildings. Energ Buildings 43(4):823–837

    Article  Google Scholar 

  113. Ma P, Wang L, Guo N (2015) Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings. Renew Sust Energ Rev 45:677–685

    Article  Google Scholar 

  114. Navarro L, de Gracia A, Castell A, Álvarez S, Cabeza LF (2014) Design of a Prefabricated Concrete Slab with PCM Inside the Hollows. Energy Procedia 57:2324–2332

    Article  Google Scholar 

  115. Jin X, Zhang X (2011) Thermal analysis of a double layer phase change material floor. Appl Therm Eng 31(10):1576–1581

    Article  Google Scholar 

  116. Pomianowski M, Heiselberg P, Jensen RL (2012) Dynamic heat storage and cooling capacity of a concrete deck with PCM and thermally activated building system. Energ Buildings 53:96–107

    Article  Google Scholar 

  117. Yang M, Yang X, Wang P, Shan M, Deng J (2013) A new Chinese solar kang and its dynamic heat transfer model. Energ Buildings 62:539–549

    Article  Google Scholar 

  118. Yang M, Yang X, Wang Z, Wang P (2014) Thermal analysis of a new solar kang system. Energ Buildings 75:531–537

    Article  Google Scholar 

  119. Fraisse G, Johannes K, Trillat-Berdal V, Achard G (2006) The use of a heavy internal wall with a ventilated air gap to store solar energy and improve summer comfort in timber frame houses. Energ Buildings 38(4):293–302

    Article  Google Scholar 

  120. Chen Y, Galal K, Athienitis AK (2010) Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab. Sol Energy 84(11):1908–1919

    Article  Google Scholar 

  121. Chen Y, Athienitis AK, Galal K (2010) Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept. Sol Energy 84(11):1892–1907

    Article  Google Scholar 

  122. Kamel R, Ekrami N, Dash P, Fung A, Hailu G (2015) BIPV/T+ASHP: Technologies for NZEBs. Energy Procedia 78:424–429

    Article  Google Scholar 

  123. Park SH, Chung WJ, Yeo MS, Kim KW (2014) Evaluation of the thermal performance of a Thermally Activated Building System (TABS) according to the thermal load in a residential building. Energ Buildings 73:69–82

    Article  Google Scholar 

  124. Romaní J, Pérez G, de Gracia A (2017) Experimental evaluation of a heating radiant wall coupled to a ground source heat pump. Renew Energy 105:520–529

    Article  Google Scholar 

  125. Yu T, Heiselberg P, Lei B, Pomianowski M, Zhang C, Jensen R (2015) Experimental investigation of cooling performance of a novel HVAC system combining natural ventilation with diffuse ceiling inlet and TABS. Energ Buildings 105:165–177

    Article  Google Scholar 

  126. Yu T, Heiselberg P, Lei B, Zhang C, Pomianowski M, Jensen R (2016) Experimental study on the dynamic performance of a novel system combining natural ventilation with diffuse ceiling inlet and TABS. Appl Energy 169:218–229

    Article  Google Scholar 

  127. Romaní J, de Gracia A, Cabeza LF (2016) Simulation and control of thermally activated building systems (TABS). Energ Buildings 127:22–42

    Article  Google Scholar 

  128. Hordeski MF (2011) New technologies for energy efficiency. The Fair- mont Press, New York

    Google Scholar 

  129. Hatamipour MS, Abedi A (2008) Passive cooling systems in buildings: Some useful experiences from ancient architecture for natural cooling in a hot and humid region. Energy Convers Manag 49(8):2317–2323

    Article  Google Scholar 

  130. Saadatian O, Sopian K, Lim CH, Asim N, Sulaiman MY (2012) Trombe walls: A review of opportunities and challenges in research and development. Renew Sust Energ Rev 16(8):6340–6351

    Article  Google Scholar 

  131. Stazi F, Mastrucci A, di Perna C (2012) The behaviour of solar walls in residential buildings with different insulation levels: An experimental and numerical study. Energ Buildings 47:217–229

    Article  Google Scholar 

  132. Gan G (2006) Simulation of buoyancy-induced flow in open cavities for natural ventilation. Energ Buildings 38(5):410–420

    Article  Google Scholar 

  133. Balcomb JD, McFarland RD (1978) A simple empirical method for estimating the performance of a passive solar heated building of the thermal storage wall type. Second National Passive Solar Conference, ISES, vol 1

    Google Scholar 

  134. NREL (2012) Building a better Trombe wall. Department of Energy’s premier laboratory for renewable energy & energy efficiency research, development and deployment, Colorado

    Google Scholar 

  135. Ozbalta TG, Kartal S (2010) Heat gain through Trombe wall using solar energy in a cold region of Turkey. Sci Res Essays 5:2768–2778

    Google Scholar 

  136. Gan G (1998) A parametric study of Trombe walls for passive cooling of buildings. Energ Buildings 27(1):37–43

    Article  MathSciNet  Google Scholar 

  137. Melero S, Morgado I, Neila J, Acha C (2011) Passive evaporative cooling by porous ceramic elements integrated in a Trombe wall. Magali Bodart AE, editor. Architecture & sustainable development. Presses univ. de Louvain, In

    Google Scholar 

  138. Zalewski L, Lassue S, Duthoit B, Butez M (2002) Study of solar walls — validating a simulation model. Build Environ 37(1):109–121

    Article  Google Scholar 

  139. Zrikem Z, Bilgen E (1987) Theoretical study of a composite Trombe-Michel wall solar collector system. Sol Energy 39(5):409–419

    Article  Google Scholar 

  140. Sadineni SB, Madala S, Boehm RF (2011) Passive building energy savings: A review of building envelope components. Renew Sust Energ Rev 15(8):3617–3631

    Article  Google Scholar 

  141. Sodha MS, Kaushik SC, Nayak JK (1981) Performance of trombe walls and roof pond systems. Appl Energy 8(3):175–191

    Article  Google Scholar 

  142. Singh SR, Bansal NK (1983) Periodic analysis of a ventilated Trombe wall. Int J Energy Res 7(2):163–172

    Article  Google Scholar 

  143. Kara YA, Kurnuç A (2012) Performance of coupled novel triple glass and phase change material wall in the heating season: An experimental study. Sol Energy 86(9):2432–2442

    Article  Google Scholar 

  144. Lachheb M, Karkri M, Nasrallah SB (2015) Development and thermal characterization of an innovative gypsum-based composite incorporating phase change material as building energy storage system. Energ Buildings 107:93–102

    Article  Google Scholar 

  145. Zalewski L, Joulin A, Lassue S, Dutil Y, Rousse D (2012) Experimental study of small-scale solar wall integrating phase change material. Sol Energy 86(1):208–219

    Article  Google Scholar 

  146. Berthou Y, Biwole PH, Achard P, Sallée H, Tantot-Neirac M, Jay F (2015) Full scale experimentation on a new translucent passive solar wall combining silica aerogels and phase change materials. Sol Energy 115:733–742

    Article  Google Scholar 

  147. Dehra H (2009) A two dimensional thermal network model for a photovoltaic solar wall. Sol Energy 83(11):1933–1942

    Article  Google Scholar 

  148. Jie J, Hua Y, Gang P, Jianping L (2007) Study of PV-Trombe wall installed in a fenestrated room with heat storage. Appl Therm Eng 27(8–9):1507–1515

    Article  Google Scholar 

  149. Sun W, Ji J, Luo C, He W (2011) Performance of PV-Trombe wall in winter correlated with south façade design. Appl Energy 88(1):224–231

    Article  Google Scholar 

  150. Jiang B, Ji J, Yi H (2008) The influence of PV coverage ratio on thermal and electrical performance of photovoltaic-Trombe wall. Renew Energy 33(11):2491–2498

    Article  Google Scholar 

  151. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  152. Schmidt T, Mangold D, Müller-Steinhagen H (2004) Central solar heating plants with seasonal storage in Germany. Sol Energy 76(1–3):165–174

    Article  Google Scholar 

  153. Kübler R, Fisch N, Hahne E (1997) High temperature water pit storage projects for the seasonal storage of solar energy. Sol Energy 61(2):97–105

    Article  Google Scholar 

  154. Zhang HF, Ge XS, Ye H (2007) Modeling of a space heating and cooling system with seasonal energy storage. Energy 32(1):51–58

    Article  Google Scholar 

  155. Karacavus B, Can A (2009) Thermal and economical analysis of an underground seasonal storage heating system in Thrace. Energ Buildings 41(1):1–10

    Article  Google Scholar 

  156. Oliveti G, Arcuri N (1995) Prototype experimental plant for the interseasonal storage of solar energy for the winter heating of buildings: Description of plant and its functions. Sol Energy 54(2):85–97

    Article  Google Scholar 

  157. Bauer D, Marx R, Nußbicker-Lux J, Ochs F, Heidemann W, Müller-Steinhagen H (2010) German central solar heating plants with seasonal heat storage. Sol Energy 84(4):612–623

    Article  Google Scholar 

  158. Singh R, Mochizuki M, Mashiko K, Nguyen T (2011) Heat pipe based cold energy storage systems for datacenter energy conservation. Energy 36(5):2802–2811

    Article  Google Scholar 

  159. Schmidt T, Mangold D, Müller-Steinhagen H (2003). Seasonal thermal energy storage in Germany. In: ISES Solar World Congress, 14–19 June, Göteborg

    Google Scholar 

  160. Williams GT, Attwater CR, Hooper FC (1980) A design method to determine the optimal distribution and amount of insulation for in-ground heat storage tanks. Sol Energy 24(5):471–475

    Article  Google Scholar 

  161. Simons A, Firth SK (2011) Life-cycle assessment of a 100% solar fraction thermal supply to a European apartment building using water-based sensible heat storage. Energ Buildings 43(6):1231–1240

    Article  Google Scholar 

  162. Schmidt T, Mangold D (2006) Status of solar thermal seasonal storage in Germany. ECOSTOCK ‘2006. In: 10th International Conference on Thermal Energy Storage, Stockton

    Google Scholar 

  163. Heller A (2000) 15 Years of R&D in central solar heating in Denmark. Sol Energy 69(6):437–447

    Article  Google Scholar 

  164. Dalenbäck JO, Jilar T (1985) Swedish solar heating with seasonal storage-design, performance and economy. Int J Amb Energy 6(3):123–128

    Article  Google Scholar 

  165. Franke R (1997) Object-oriented modeling of solar heating systems. Sol Energy 60(3):171–180

    Article  Google Scholar 

  166. Oliveti G, Arcuri N, Ruffolo S (1998) First experimental results from a prototype plant for the interseasonal storage of solar energy for the winter heating of buildings. Sol Energy 62(4):281–290

    Article  Google Scholar 

  167. Bokhoven TP, Van Dam J, Kratz P (2001) Recent experience with large solar thermal systems in The Netherlands. Sol Energy 71(50):347–352

    Article  Google Scholar 

  168. Colclough S, Griffiths P (2016) Financial analysis of an installed small scale seasonal thermal energy store. Renew Energy 86:422–428

    Article  Google Scholar 

  169. Novo AV, Bayon JR, Castro-Fresno D, Rodriguez-Hernandez J (2010) Review of seasonal heat storage in large basins: Water tanks and gravel–water pits. Appl Energy 87(2):390–397

    Article  Google Scholar 

  170. Hahne E (2000) The ITW solar heating system: an oldtimer fully in action. Sol Energy 69(6):469–493

    Article  Google Scholar 

  171. Lottner V, Schulz ME, Hahne E (2000) Solar-Assisted District Heating Plants: Status of the German Programme Solarthermie-2000. Sol Energy 69(6):449–459

    Article  Google Scholar 

  172. Pfeil M, Koch H (2000) High performance–low cost seasonal gravel/water storage pit. Sol Energy 69(6):461–467

    Article  Google Scholar 

  173. Pavlov GK, Olesen BW (2011) Seasonal grounds ola thermal energy storage-review of systems and applications. Proceedings of ISES Solar World Congress, Kassel

    Google Scholar 

  174. Seibt P, Kabus F (2006) Aquifer thermal energy storage – projects implemented in Germany. ECOSTOCK ‘2006. In: 10th International Conference on Thermal Energy Storage, Stockton

    Google Scholar 

  175. Nagano K, Mochida T, Ochifuji K (2002) Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage. Appl Therm Eng 22(12):1299–1311

    Article  Google Scholar 

  176. Zhou X, Gao Q, Chen X, Yu M, Zhao X (2013) Numerically simulating the thermal behaviors in groundwater wells of groundwater heat pump. Energy 61:240–247

    Article  Google Scholar 

  177. Yapparova A, Matthäi S, Driesner T (2014) Realistic simulation of an aquifer thermal energy storage: Effects of injection temperature, well placement and groundwater flow. Energy 76:1011–1018

    Article  Google Scholar 

  178. Kim J, Lee Y, Yoon WS, Jeon JS, Koo MH, Keehm Y (2010) Numerical modeling of aquifer thermal energy storage system. Energy 35(12):4955–4965

    Article  Google Scholar 

  179. Bakr M, van Oostrom N, Sommer W (2013) Efficiency of and interference among multiple Aquifer Thermal Energy Storage systems; A Dutch case study. Renew Energy 60:53–62

    Article  Google Scholar 

  180. Sommer W, Valstar J, Leusbrock I, Grotenhuis T, Rijnaarts H (2015) Optimization and spatial pattern of large-scale aquifer thermal energy storage. Appl Energy 137:322–337

    Article  Google Scholar 

  181. Ganguly S, Kumar MSM, Date A, Akbarzadeh A (2017) Numerical investigation of temperature distribution and thermal performance while charging-discharging thermal energy in aquifer. Appl Therm Eng 115:756–773

    Article  Google Scholar 

  182. Ghaebi H, Bahadori MN, Saidi MH (2014) Performance analysis and parametric study of thermal energy storage in an aquifer coupled with a heat pump and solar collectors, for a residential complex in Tehran, Iran. Appl Therm Eng 62(1):156–170

    Article  Google Scholar 

  183. Hill M, DeHouche Z (2017) A comparative analysis of the effectiveness of aquifer thermal energy storage in Expeditionary Campaign Infrastructure. Appl Therm Eng 114:271–278

    Article  Google Scholar 

  184. Vanhoudt D, Desmedt J, Van Bael J, Robeyn N, Hoes H (2011) An aquifer thermal storage system in a Belgian hospital: Long-term experimental evaluation of energy and cost savings. Energ Buildings 43(12):3657–3665

    Article  Google Scholar 

  185. Morofsky E, Chant V, Hickling JF, Le Feuvre T (1984) Seasonal storage of building waste heat in an aquifer. In: Proceedings of the first E.C. conference on solar heating, 30 April–04 May, Amsterdam

    Google Scholar 

  186. Fisch MN, Guigas M, Dalenbäck JO (1998) A REVIEW OF LARGE-SCALE SOLAR HEATING SYSTEMS IN EUROPE. Sol Energy 63(6):355–366

    Article  Google Scholar 

  187. Hesaraki A, Holmberg S, Haghighat F (2015) Seasonal thermal energy storage with heat pumps and low temperatures in building projects – a comparative review. Renew Sust Energ Rev 43:1199–1213

    Article  Google Scholar 

  188. Xiao X, Jiang Z, Owen D, Schrank C (2016) Numerical simulation of a high-temperature aquifer thermal energy storage system coupled with heating and cooling of a thermal plant in a cold region, China. Energy 112:443–456

    Article  Google Scholar 

  189. Lanini S, Delaleux F, Py X, Olivès R, Nguyen D (2014) Improvement of borehole thermal energy storage design based on experimental and modelling results. Energ Buildings 77:393–400

    Article  Google Scholar 

  190. Florides G, Kalogirou S (2007) Ground heat exchangers—A review of systems, models and applications. Renew Energy 32(15):2461–2478

    Article  Google Scholar 

  191. Bottarelli M, Bortoloni M, Su Y (2015) Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials. Appl Therm Eng 90:1044–1051

    Article  Google Scholar 

  192. Drake Landing Solar Community (2012) Borehole thermal energy storage (BTES). Available from: http://dlsc.ca

  193. Gustafsson AM, Westerlund L, Hellström G (2010) CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger. Appl Therm Eng 30(6–7):683–691

    Article  Google Scholar 

  194. Delaleux F, Py X, Olives R, Dominguez A (2012) Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity. Appl Therm Eng 33–34:92–99

    Article  Google Scholar 

  195. Lundh M, Dalenbäck JO (2008) Swedish solar heated residential area with seasonal storage in rock: Initial evaluation. Renew Energy 33(4):703–711

    Article  Google Scholar 

  196. Reuss M, Beuth W, Schmidt M, Schoelkopf W (2006) Solar district heating with seasonal storage in Attenkirchen. ECOSTOCK’2006. In: 10th International Conference on Thermal Energy Storage, Stockton

    Google Scholar 

  197. Dalenbäck JO (2012) Available from: http://www.solar-district-heating.eu/SDH/LargeScaleSolarHeatingPlants.aspx

  198. Chuard P, Hadorn JC (1983) Solar heating and cooling programme: IEA solar R&D, task VII: centeral solar heating plants with seasonal storage

    Google Scholar 

  199. Wang X, Zheng M, Zhang W, Zhang S, Yang T (2010) Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas. Energ Buildings 42(11):2104–2110

    Article  Google Scholar 

  200. IEA-ETSAP and IRENA (2013) Thermal Energy Storage Technology Brief E17. https://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP%20Tech%20Brief%20E17%20Thermal%20Energy%20Storage.pdf

  201. Altwies JE, Reindl DT (2001) Passive thermal energy storage in refrigerated warehouses. Int J Refrig 24(1):149–157

    Google Scholar 

  202. Li G, Zheng X (2016) Thermal energy storage system integration forms for a sustainable future. Renew Sust Energ Rev 62:736–757

    Article  Google Scholar 

  203. Paksoy HO, Andersson O, Abaci S, Evliya H, Turgut B (2000) Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer. Renew Energy 19(1–2):117–122

    Article  Google Scholar 

  204. Xu J, Wang RZ, Li Y (2014) A review of available technologies for seasonal thermal energy storage. Sol Energy 103:610–638

    Article  Google Scholar 

  205. Xu X, Wang S, Wang J, Xiao F (2010) Active pipe-embedded structures in buildings for utilizing low-grade energy sources: A review. Energ Buildings 42(10):1567–1581

    Google Scholar 

  206. Xu X, Yu J, Wang S, Wang J (2014) Research and application of active hollow core slabs in building systems for utilizing low energy sources. Appl Energy 116:424–435

    Article  Google Scholar 

  207. Zhu J, Chen B (2015) Experimental study on thermal response of passive solar house with color changed. Renew Energy 73:55–61

    Article  Google Scholar 

  208. Lee, K., Lee, J., Yoon, E., Joo, M., Lee, S., & Baek, N. (2014). Annual measured performance of building-integrated solar energy systems in demonstration low-energy solar house. Journal of Renewable and Sustainable Energy, 6(4), 04 2013. https://doi.org/10.1063/1.4893467

  209. Chen TY (2001). Real-time predictive supervisory operation of building thermal systems with thermal mass. Energy and Buildings 33(2):141–150. https://doi.org/10.1016/S0378-7788(00)00078-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Fan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Fan, Y., Luo, L. (2018). Energy Storage by Sensible Heat for Buildings. In: Wang, R., Zhai, X. (eds) Handbook of Energy Systems in Green Buildings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49088-4_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49088-4_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49088-4

  • Online ISBN: 978-3-662-49088-4

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics