Skip to main content

Unbounded Discrepancy of Deterministic Random Walks on Grids

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

Abstract

Random walks are frequently used in randomized algorithms. We study a derandomized variant of a random walk on graphs, called rotor-router model. In this model, instead of distributing tokens randomly, each vertex serves its neighbors in a fixed deterministic order. For most setups, both processes behave remarkably similar: Starting with the same initial configuration, the number of tokens in the rotor-router model deviates only slightly from the expected number of tokens on the corresponding vertex in the random walk model. The maximal difference over all vertices and all times is called single vertex discrepancy. Cooper and Spencer (2006) showed that on \(\mathbb {Z}^{d}\) the single vertex discrepancy is only a constant \(c_d\). Other authors also determined the precise value of \(c_d\) for \(d=1,2\). All these results, however, assume that initially all tokens are only placed on one partition of the bipartite graph \(\mathbb {Z}^{d}\). We show that this assumption is crucial by proving that otherwise the single vertex discrepancy can become arbitrarily large. For all dimensions \(d\ge 1\) and arbitrary discrepancies \(\ell \ge 0\), we construct configurations that reach a discrepancy of at least \(\ell \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: 20th FOCS, pp. 218–223 (1979)

    Google Scholar 

  2. Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Barve, R.D., Grove, E.F., Vitter, J.S.: Simple randomized mergesort on parallel disks. Parallel Comput. 23, 601–631 (1997). Also in 8th SPAA, pp. 109–118 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cooper, J., Doerr, B., Spencer, J., Tardos, G.: Deterministic random walks on the integers. Eur. J. Combin. 28, 2072–2090 (2007). Also in 3rd ANALCO, pp. 185–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cooper, J., Doerr, B., Friedrich, T., Spencer, J.: Deterministic random walks on regular trees. Random Struct. Algorithms 37, 353–366 (2010). Also in 19th SODA, pp. 766–772 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooper, J.N., Spencer, J.: Simulating a random walk with constant error. Combin. Probab. Comput. 15, 815–822 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dereniowski, D., Kosowski, A., Pajak, D., Uznanski, P.: Bounds on the cover time of parallel rotor walks. In: 31st STACS, pp. 263–275 (2014)

    Google Scholar 

  8. Doerr, B., Friedrich, T.: Deterministic random walks on the two-dimensional grid. Combin. Probab. Comput. 18, 123–144 (2009). Also in 17th ISAAC, pp. 474–483 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. ACM Trans. Algorithms 11, 9:1–9:35 (2014). Also in 19th SODA, pp. 773–781 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dumitriu, I., Tetali, P., Winkler, P.: On playing golf with two balls. SIAM J. Discrete Math. 16, 604–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38, 1–17 (1991). Also in 21st STOC, pp. 375–381 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedrich, T., Sauerwald, T.: The cover time of deterministic random walks. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 130–139. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Friedrich, T., Gairing, M., Sauerwald, T.: Quasirandom load balancing. SIAM J. Comput. 41, 747–771 (2012). Also in 21st SODA, pp. 1620–1629 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kijima, S., Koga, K., Makino, K.: Deterministic random walks on finite graphs. In: 9th ANALCO, pp. 16–25 (2012)

    Google Scholar 

  15. Klasing, R., Kosowski, A., Pajak, D., Sauerwald, T.: The multi-agent rotor-router on the ring: a deterministic alternative to parallel random walks. In: 32nd PODC, pp. 365–374 (2013)

    Google Scholar 

  16. Kleber, M.: Goldbug variations. The Math. Intell. 27, 55–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kosowski, A., Pająk, D.: Does adding more agents make a difference? a case study of cover time for the rotor-router. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 544–555. Springer, Heidelberg (2014)

    Google Scholar 

  18. Lawler, G., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  19. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

    Google Scholar 

  20. Priezzhev, V.B., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a model of self-organized criticality. Phys. Rev. Lett. 77, 5079–5082 (1996)

    Article  Google Scholar 

  21. Robbins, H.: A remark on Stirling’s formula. The Am. Math. Mon. 62, 26–29 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Rob. Autom. 15, 918–933 (1999)

    Article  Google Scholar 

  23. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37, 165–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedrich, T., Katzmann, M., Krohmer, A. (2015). Unbounded Discrepancy of Deterministic Random Walks on Grids. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics