Skip to main content

Tumoren des Skelettsystems

  • Chapter
PET/CT-Atlas

Zusammenfassung

Die Knochenszintigraphie als eine der häufigsten Untersuchungen bei onkologischen Patienten ist fest in den interdisziplinären Leitlinien verankert. Auch aufgrund der schwierigen Abrechnungssituation in Bezug auf die PET/CT hat sich die SPECT/CT etabliert. Nichtsdestotrotz ist die PET der SPECT überlegen. Für die Diagnostik des Skelettsystems stehen mit 18F-FDG und 18F-Na-Fluorid zuverlässige Tracer zur metabolischen ossären Diagnostik zur Verfügung. Einschränkungen im Bereich des Prostatakarzinoms bei der Anwendung der PET/CT hinsichtlich der zuverlässigen Darstellung des Primarius und einer Knochenmetastasierung sind durch den Einsatz des 68Ga-PSMA-Liganden nicht mehr gegeben. Die PET/CT erweist sich immer dann als vorteilhaft, wenn die diagnostische Fragestellung über die reine Beurteilung der Knochenmorphologie hinausgeht. So bewährt sich der Ansatz der Hybridbildgebung mit diagnostisch durchgeführter CT vor allen Dingen bei metabol nicht oder wenig aktiven ossären Metastasen oder Neoplasien.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Adams S, Hör G (2004) Nuklearmedizinische Diagnostik von Knochenentzündungen. In: Schnettler R, Steinau HU (Hrsg) Septische Knochenchirurgie. Thieme, Stuttgart, S 57–74

    Google Scholar 

  2. Berger F, Lee YP, Loening AM et al. (2002) Whole body skeletal imaging in mice utilizing micro-PET: optimization of reproducibility and applications in animal models of bone disease. Eur J Nucl Med Mol Imaging 29: 1225–1236

    Article  CAS  PubMed  Google Scholar 

  3. Brenner W, Conrad EU, Eary JF (2004) FDG PET imaging for grading and prediction of outcome in chrondrosarcoma patients. Eur J Nucl Med Mol Imaging 31: 189–195

    Article  PubMed  Google Scholar 

  4. Brenner W, Vernon C, Muzi M et al. (2004) Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med 45: 1493–1500

    CAS  PubMed  Google Scholar 

  5. Costelloe CM, Chuang HH, Madewell JE (2014) FDG PET/CT of primary bone tumors. AJR Am J Roentgenol 202(6): W521–31

    Article  PubMed  Google Scholar 

  6. Cremerius U, Mumme T, Reinartz P et al. (2003) Analyse des 18F- FDG Speichermusters in der PET zur Diagnostik von septischer und aseptischer Lockerung bei Totalendoprothesen des Hüftgelenks. Nuklearmedizin 42: 234–239

    CAS  PubMed  Google Scholar 

  7. Even-Sapir E (2005) Imaging of malignant bone involvement by morphological scintigraphic and hybrid modalities. J Nucl Med 46: 1356–1367

    PubMed  Google Scholar 

  8. Even-Sapir E, Metser U, Flusser G et al. (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45: 272–278

    PubMed  Google Scholar 

  9. Fellner M, Baum RP, Kubícek V, Hermann P, Lukes I, Prasad V, Rösch F (2010) PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur J Nucl Med Mol Imaging. 37(4): 834

    Article  PubMed  Google Scholar 

  10. Fellner M, Riss P, Loktionova N, Zhernosekov K, Thews O, Geraldes CFGC, Kovacs Z, Lukes I, Rösch F (2011) Comparison of different phosphorus-containing ligands complexing 68 Ga for PET-imaging of bone metabolism. Radiochim Acta 99: 43–51

    Article  CAS  Google Scholar 

  11. Fellner M, Biesalski B, Bausbacher N, Kubícek V, Hermann P, Rösch F, Thews O (2012) (68)Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl Med Biol 39(7): 993–999

    Article  CAS  PubMed  Google Scholar 

  12. Folpe AL, Lyles RH, Sprouse JT et al. (2000) (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathological grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 6: 12379–12387

    Google Scholar 

  13. Franzius C, Sciuk J (2000) Positronenemissionstomographie mit F-18-Fluor-Desoxyglukose (FDG-PET)im Kinder- und Jugendalter: Erfahrungen an über 500 pädiatrischen Patienten. Der Nuklearmediziner 23: 287–295

    Google Scholar 

  14. Franzius C, Sciuk J, Brinkschmidt C et al. (2000) Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med 25: 874–881

    Article  CAS  PubMed  Google Scholar 

  15. Franzius C, Sciuk J, Daldrup-Link HE et al. (2000) FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 27: 1305–1311

    Article  CAS  PubMed  Google Scholar 

  16. Franzius C, Daldrup-Link HE, Sciuk J et al. (2001) FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 12: 479–486

    Article  CAS  PubMed  Google Scholar 

  17. Franzius C, Bielack S, Flege S et al. (2002) Prognostic significance of 18F-FDG and 99mTc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43: 1012–1017

    CAS  PubMed  Google Scholar 

  18. Franzius C, Daldrup-Link HE, Wagner-Bohn A et al. (2002) FDGPET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13: 157–160

    Article  CAS  PubMed  Google Scholar 

  19. Hartmann A, Eid K, Dora C et al. (2007) Diagnostic value of 18FFDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging 34: 704–714

    Article  PubMed  Google Scholar 

  20. Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA (2012) Review of functional/anatomical imaging in oncology. Nucl Med Commun 33(4): 349–361

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hoegerle S, Juengling F, Otte A et al. (1998) Combined FDG and [F-18]fluoride whole-body PET: a feasible two-in-one approach to cancer imaging? Radiology 209: 253–258

    Article  CAS  PubMed  Google Scholar 

  22. Hor G, Frey KW, Keyl W, Hertel E (1969) Vergleich von Szintigraphie und Rontgendiagnostik bei Osteomyelitis. Fortschr Rontgenstr 110: 708–716

    Article  CAS  Google Scholar 

  23. Hor G, Keyl W, Langhammer H, Herzog M, Pabst HW (1975) Ergebnisvergleich der 99 m-Tc-Polyphosphat-Kamera (Sequenz, Funktions)-Szintigraphie, der 85Sr-, 87 m-Sr-Scannerszintigraphie und radiologischer Methoden in der Orthopadie. Nuklearmedizin 14: 37–45

    CAS  Google Scholar 

  24. Holub J, Meckel M, Kubicek V, Rosch F, Hermann P (2014) Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging. Contrast Media Mol Imaging. doi:10.1002/cmmi.1606

    PubMed  Google Scholar 

  25. Hsu WK, T B, Feely, Kr en ek L et al. (2007) The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model. Eur J Nucl Med Mol Imaging 34: 1291–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kapoor N, Shinagare AB, Jagannathan JP, Shah SH, Krajewski KM, Hornick JL, Ramaiya NH (2014) Clinical and radiologic features of extraskeletal myxoid chondrosarcoma including initial presentation, local recurrence, and metastases. Radiol Oncol 48(3): 235–242

    Google Scholar 

  27. Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d’Othee BJ, Therasse P, Berg A, Vande B, Tombal B (2007) Magnetic Resonance Imaging of the Axial Skeleton for Detecting Bone Metastases in Patients with High-Risk Prostate Cancer: Diagnostic and Cost- Effectiveness and Comparison with Current Detection Strategies. J Clin Oncol 25(22): 3281–3287

    Article  PubMed  Google Scholar 

  28. Lodge MA, Lucas JD, Marsden PK et al. (1999) A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 26: 22–30

    Article  CAS  PubMed  Google Scholar 

  29. Mueller-Lisse UG, Mueller-Lisse UL (2010) Imaging of advanced renal cell carcinoma. World J Urol 28(3): 253–261

    Article  PubMed  Google Scholar 

  30. Mullerad M, Eisenberg DP, Akhurst TJ et al. (2006) Use of positron emission tomography to target prostate cancer gene therapy by oncolytic herpes simplex virus. Mol Imaging Biol 8: 30–35

    Article  PubMed  PubMed Central  Google Scholar 

  31. Piert M, Winter E, Becker GA, Bilger K et al. (1999) Allogenic bone graft viability after hip revision arthroplasty assessed by dynamic [18F]fluoride ion positron emission tomography. Eur J Nucl Med 26: 615–624

    Article  CAS  PubMed  Google Scholar 

  32. Rosch F, Baum RP (2011) Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans 40(23): 6104–6111

    Article  PubMed  Google Scholar 

  33. Sasaki M, Ichiya Y, Kuwabara Y, Otsuka M, Fukumura T, Kawai Y, Koga H, Masuda K (1993) Fluorine-18-fluorodeoxyglucose positron emission tomography in technetium-99 m-hydroxymethylenediphosphate negative bone tumors. J Nucl Med 34: 288–290

    CAS  PubMed  Google Scholar 

  34. Schillaci O, Danieli R, Manni C, Simonetti G (2004) Is SPECT/CT with a hybrid camera useful to improve scintigraphic imaging interpretation? Nucl Med Commun 25(7): 705–710

    Article  PubMed  Google Scholar 

  35. Schirrmeister H, Glatting G, Hetzel J et al. (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and 18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42: 1800–1804

    CAS  PubMed  Google Scholar 

  36. Zhuang H, Duarte PS, Pourdehnad M et al. (2001) The promising role of 18F-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 42: 44–48

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohnike, W., Hör, G., Lampe, M. (2016). Tumoren des Skelettsystems. In: Mohnike, W., Hör, G., Hertel, A., Schelbert, H. (eds) PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48842-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48842-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48841-6

  • Online ISBN: 978-3-662-48842-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics