Skip to main content

Effects of Pressure and Vibration Stimuli on the Usability of Human-Machine Systems

Studies on Spatial Recognition and Response Times Using a Variable Tactile Belt

  • Conference paper
Advances in Ergonomic Design of Systems, Products and Processes
  • 1171 Accesses

Abstract

Users’ information processing during human-machine interaction can be supported by redundant or additional tactile information, especially in situations of visual information overload or impaired visual perception. The present work is meant to describe basic thoughts on tactile semantics, the development of a variable tactile belt with 8 actuator units as well as first results of comparative studies of pressure and vibration stimuli, separately and in addition to visual perception. The examinations were conducted with 25 subjects. Spatial recognition rate and response time were recorded for pressure, vibration and visual stimuli presentation as well as all combinations of these. For purely tactile perception (pressure and vibration) reduced recognition rates occur at the sides of the waist, decreasing to approximately 80 %. Response times for discrete presentation of information via pressure or vibration were longer than for visual presentation but shorter response times of the visual presentation could almost be achieved purely tactile by the combination of pressure and vibration. The significantly shortest response times were detected for the combinations of visual + pressure + vibration and visual + pressure, revealing the potential of pressure stimuli for human-machine interaction. According to the 8 presented directions around the body, the shortest response times for tactile stimuli were detected for the actuator unit on the back. Furthermore, the article deals with subjects’ estimations about their performances, distribution of input errors as well as different stimuli durations. The findings confirm expected advantages of visual-tactile information presentation in human-machine systems. Visual perception leads to high accuracy while additional tactile stimuli reduce response times. Especially pressure stimuli seem to have slight advantages compared to vibration stimuli in terms of response times. The combination of pressure and vibration stimuli even leads to response times similar to visual presentation. As a conclusion, the potential of pressure stimuli could be shown to enhance future design of visual-tactile interfaces. In the long term, guidelines for tactile semantics are supposed to be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlick C (2010) Arbeitswissenschaft, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  2. Petrov A, Pfeffer S, Maier T (2011) Visuelle Präsentation und taktile Repräsentation – redundante, substitutive oder komplementäre Informationsdarbietung. In: 9. Berliner Werkstatt Mensch-Maschine-Systeme. Berlin

    Google Scholar 

  3. Schwalk M, Maier T (2014) Multimodale HMI – Untersuchungen zur Erweiterung der Arbeitsgedächtniskapazität durch visuell-taktile Anzeiger. In: Krzywinski J, Linke M, Wölfel C, Kranke G (eds) Entwerfen Entwickeln Erleben – Beiträge zum Technischen Design, Dresden, pp 233–242

    Google Scholar 

  4. Maier T, Schmid M (2014) IDeEn Kompakt – Manuscript of lecture Industrial Design Engineering. University of Stuttgart, Institute for Engineering Design and Industrial Design – Research and Teaching Department Industrial Design Engineering. Germany

    Google Scholar 

  5. Wickens CD, Hollands JG (1999) Engineering psychology and human performance, 3rd edn. Prentice-Hall, Upper Saddle River, NJ, 07458, pages 10 ff

    Google Scholar 

  6. Endsley MR (1995) Toward a theory of situation awareness in dynamic systems. In: Human factors. The journal of the human factors and ergonomics society 37, pages 32 ff

    Google Scholar 

  7. Wentura D, Frings C (2013) Kognitive Psychologie. Springer Fachmedien, Wiesbaden

    Book  Google Scholar 

  8. DIN EN ISO 9241-11 (1999) Ergonomic requirements for office work with visual display terminals (VDTs) – Part 11: Guidance on usability

    Google Scholar 

  9. Van Erp JBF, Van Veen H (2001) Vibro-tactile information presentation in automobiles. In: Proceedings of Eurohaptics, pp 99–104

    Google Scholar 

  10. General Motors (2013) Sierra Safety Alert Seat Aids Driver Awareness (published April 30, 2013). Website: http://media.gmc.com/media/us/en/gmc/vehicles/sierra_hd/2014.detail.html/content/Pages/news/us/en/2013/Apr/0430-sierra.html. Accessed 24 Jul 2014

  11. Gulde D (2014) Nervig oder hilfreich? Spurhalteassistenten im Test (published May 23, 2014). Motor Presse Stuttgart GmbH & Co. KG. Website: http://www.auto-motor-und-sport.de/testbericht/spurhalteassistenten-im-test-nervig-oder-hilfreich-8337582.html. Accessed 24 Jul 2014

  12. Pudenz K (2014) Ein vibrierendes und pulsierendes Lenkrad: Forschung an haptischen Navigationssystemen (published May 7, 2014). Springer Fachmedien Wiesbaden GmbH. Website: http://www.springerprofessional.de/einvibrierendes-und-pulsierendes-lenkrad-forschung-an-haptischennavigationssystemen-15881/3952694.html. Accessed 24 Jul 2014

  13. Riener A, Ferscha A, Frech P, Hackl M, Kaltenberger M (2010) Subliminal vibro-tactile based notification of CO2 economy while driving. Institute for Pervasive Computing, Johannes Kepler University, Linz, Austria

    Google Scholar 

  14. Gill B (2014) What’s the difference between Pre-Collision and Advanced Pre-Collision? Are they the same system? Lexus, a Division of Toyota Motor Sales, U.S.A., Inc. Website: https://secure.drivers.lexus.com/lexusdrivers/magazine/articles/Vehicle-Insider/Ask-Lexus-Collision. Accessed 2 Nov 2014

  15. Continental AG (2010) Leichtes Pulsieren im Gaspedal besser als Warnleuchten oder Töne (published February 23, 2010). Website: https://www.conti-online.com/www/presseportal_com_de/themen/pressemitteilungen/3_automotive_group/chassis_safety/press_releases/pr_2010_02_23_affp_hmi_de.html. Accessed 24 Jul 2014

  16. Brell M (2009) Eine vibrotaktile Mensch-Maschine-Schnittstelle für chirurgische Applikationen. Ph.D. dissertation, Department of Computing Science, University of Oldenburg. Germany

    Google Scholar 

  17. Ng JYC, Man JCF (2004) Vibro-monitor: a vibrotactile display for physiological data monitoring. In: Proceedings of the human interface technologies conference. University of British Columbia

    Google Scholar 

  18. DLR Nachrichten (2012) Navigation durch Vibration: VibroTac unterstützt sehbehinderte und blinde Menschen (published September 25, 2012). Website: http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-5318/year-ll/#gallery/7675. Accessed 20 Feb 2014

  19. Self BP, Van Erp JBF, Eriksson L, Elliott LR (2008) Human Factors issues of tactile displays for military environments. In: Van Erp JBF, Self BP (eds) Tactile displays for orientation, navigation, and communication in air, sea, and land environments. NATO RTO Technical Report: TR-HFM-122

    Google Scholar 

  20. McGrath B, Rupert A (2014) Tactile displays: from the cockpit to the clinic. In: Ahram T, Karwowski W, Marek T (eds) Proceedings of the 5th international conference on applied human factors and ergonomics AHFE 2014. Kraków, Poland, pp 939–947

    Google Scholar 

  21. Cholewiak RW (1979) Spatial factors in the perceived intensity of vibrotactile patterns. Sens Processes 3(2):141–156

    Google Scholar 

  22. Cholewiak RW, Collins AA (1997) Individual differences in the vibrotactile perception of a “simple” pattern set. Percept Psychophys 59(6):850–866

    Article  Google Scholar 

  23. Cholewiak RW, Collins AA (2000) The generation of vibrotactile patterns on a linear array: influences of body site, space, and time. Percept Psychophys 62(6):1220–1235

    Article  Google Scholar 

  24. Cholewiak RW (1994) A comparison of vibrotactile pattern perception by young and old observers. Report No. NMAB-478: Currency Features for Visually Impaired People: National Research Council, National Materials Advisory Board report to the Bureau of Engraving and Printing, Department of Treasury, National Academy Press

    Google Scholar 

  25. Pielot M, Henze N, Heuten W, Boll S (2008) Evaluation of continuous direction encoding with tactile belts. HAID’08: Haptic and Audio Interaction Design

    Google Scholar 

  26. Heuten W, Henze N, Boll S, Pielot M (2008) Tactile Wayfinder: a non-visual support system for Wayfinding. In: Proceedings of NordiCHI, pp 172–181

    Google Scholar 

  27. Tsukada K, Yasumura M (2004) Active belt: belt-type wearable tactile display for directional navigation. UbiComp2004. Springer LNCS3205, pp 384–399

    Google Scholar 

  28. Bark K, Wheeler J, Lee G, Savall J, Cutkosky MR (2009) A Wearable Skin Stretch Device for Haptic Feedback. World Haptics, Salt Lake City, UT

    Book  Google Scholar 

  29. Wheeler J, Bark K, Savall J, Cutkosky MR (2010) Investigation of Rotational Skin Stretch for Proprioceptive Feedback with Application to Myoelectric Systems. IEEE Trans Neural Syst Rehabil Eng 18(1):58–66

    Article  Google Scholar 

  30. Guinan AL, Hornbaker NC, Montandon MN, Doxon AJ, Provancher WR (2013) Back-to-back skin stretch feedback for communicating five degree-of-freedom direction cues. In: Proceedings of the 2013 World haptics conference. Daejeon, Korea

    Google Scholar 

  31. Gwilliam LT, Doxon AJ, Provancher WR (2013) Haptic matching of directional force and skin stretch feedback cues. In: Proceedings of the 2013 World haptics conference. Daejeon, Korea

    Google Scholar 

  32. Jones L, Sarter N (2008) Tactile displays: Guidance for their design and application. Hum Factors 50:90–111

    Article  Google Scholar 

  33. Van Erp JBF (2002) Guidelines for the use of vibro-tactile displays in human computer interaction. Proceedings of Eurohaptics 01/2002

    Google Scholar 

  34. Kaaresoja T, Linjama J (2005) Perception of short tactile pulses generated by a vibration motor in a mobile phone. In: Proceedings of the first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. IEEE, Washington, DC, pp 471–472

    Chapter  Google Scholar 

  35. White T. (2010) Suitable body locations and vibrotactile cueing types for dismounted soldiers. Tech. Rep. ARL-TR-5186. Aberdeen Proving Grounds, MD: U.S. Army Research Laboratory

    Google Scholar 

  36. Barber DJ, Reinerman-Jones LE, Matthews G (2014) Toward a Tactile Language for Human-Robot Interaction: Two Studies of Tacton Learning and Performance. The Journal of the Human Factors and Ergonomics Society, Human Factors

    Google Scholar 

  37. Schwalk M, Sperl M, Maier T (2015) Abbildung von Druck- und Vibrationsreizen auf dem menschlichen Körper durch einen variablen taktilen Hüftgurt. In: VerANTWORTung für die Arbeit der Zukunft, 61. Frühjahrskongress der Gesellschaft für Arbeitswissenschaft. Karlsruhe

    Google Scholar 

  38. German Engineer Association (VDI) guideline 2225 (1998) Design engineering methodics – Engineering design at optimum cost – Valuation of costs

    Google Scholar 

  39. Grunwald M, Beyer L (2001) Der Bewegte Sinn – Grundlagen und Anwendungen zur haptischen Wahrnehmung. Birkhäuser-Verlag, Basel

    Google Scholar 

  40. Cholewiak RW, Brill JC, Schwab A (2004) Vibrotactile localization on the abdomen: Effects of place and space. Percept Psychophys 66:970–987

    Article  Google Scholar 

  41. DIN 33402-2 (2005) Ergonomics – Human body dimensions – Part 2: Values. Deutsches Institut für Normung e.V. Beuth, Berlin, Germany

    Google Scholar 

  42. Rheinländer J (2014) Untersuchungen zur taktilen Informationskodierung mittels Druck- und Vibrationsreizen bei der Mensch-Maschine-Interaktion (extract from student research project, unpublished). University of Stuttgart, Institute for Engineering Design and Industrial Design (IKTD). Germany

    Google Scholar 

  43. Brill JC, Scerra VE (2014) Effectiveness of vibrotactile and spatial audio directional cues for USAF Pararescue Jumpers (PJs). In: Ahram T, Karwowski W, Marek T (eds) Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics AHFE 2014. Kraków, Poland, pp 958–965

    Google Scholar 

  44. Apple Inc. (2015) Product details of apple watch. Website: https://www.apple.com/de/watch/technology/, accessed May 4, 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Schwalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwalk, M., Maier, T. (2016). Effects of Pressure and Vibration Stimuli on the Usability of Human-Machine Systems. In: Deml, B., Stock, P., Bruder, R., Schlick, C.M. (eds) Advances in Ergonomic Design of Systems, Products and Processes. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48661-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48661-0_23

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48659-7

  • Online ISBN: 978-3-662-48661-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics