Skip to main content

X-Ray Absorption Spectroscopic Characterization of Nanomaterial Catalysts in Electrochemistry and Fuel Cells

  • Chapter
  • First Online:
X-ray and Neutron Techniques for Nanomaterials Characterization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  2. Calvin S (2013) XAFS for everyone. CRC Press/Taylor and Francis Group, Boca Raton

    Google Scholar 

  3. Koningsberger DC, Prins R (eds) (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, in chemical analysis, vol 92. Wiley, New York

    Google Scholar 

  4. McBreen J, Mukerjee S (1999) In situ x-ray absorption studies of carbon-supported Pt and Pt alloy nanoparticles. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment and applications. Marcel Dekker, New York, pp 895–914

    Google Scholar 

  5. See URL: xafs.org/Tutorials

    Google Scholar 

  6. Stern EA (1974) Theory of the extended x-ray-absorption fine structure. Phys Rev B 10(8):3027–3037

    Article  Google Scholar 

  7. See URL: lightsources.org

    Google Scholar 

  8. McBreen J, O’Grady WE, Pandya KI, Hoffman RW, Sayers DE (1987) EXAFS study of the nickel oxide electrode. Langmuir 3(3):428–433

    Article  Google Scholar 

  9. Sasaki K, Wang JX, Naohara H, Marinkovic N, More K, Inada H, Adzic RR (2010) Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim Acta 55(8):2645–2652

    Article  Google Scholar 

  10. Ramaker DE, Koningsberger DC (2010) The atomic AXAFS and Δμ XANES techniques as applied to heterogeneous catalysis and electrocatalysis. Phys Chem Chem Phys 12(21):5514–5534

    Article  Google Scholar 

  11. Arruda TM, Shyam B, Ziegelbauer JM, Mukerjee S, Ramaker DE (2008) Investigation into the competitive and site-specific nature of anion adsorption on Pt using in situ X-ray absorption spectroscopy. J Phys Chem C 112(46):18087–18097

    Article  Google Scholar 

  12. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541

    Article  Google Scholar 

  13. See URL: http://cars9.uchicago.edu/~newville/adb/search.html

  14. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691

    Article  Google Scholar 

  15. Benfield RE (1992) Mean coordination numbers and the non-metal–metal transition in clusters. J Chem Soc Faraday Trans 88(8):1107–1110

    Article  Google Scholar 

  16. Beale AM, Weckhuysen BM (2010) EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. Phys Chem Chem Phys 12(21):5562–5574

    Article  Google Scholar 

  17. Frenkel A (2007) Solving the 3D structure of metal nanoparticles. Zeistchrift für Kristallographie 222(11):605–611

    Google Scholar 

  18. Alayoglu S, Zavalij P, Eichorn B, Wang Q, Frenkel AI, Chupas P (2009) Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt–Ru core-shell and alloy nanoparticles. ACS Nano 3(10):3127–3137

    Article  Google Scholar 

  19. Nagamatsu S, Arai T, Yamamoto M, Ohkura T, Oyanagi H, Ishizaka T, Kawanami H, Uruga T, Tada M, Iwasawa Y (2013) Potential-dependent restructuring and hysteresis in the structural and electronic transformations of Pt/C, Au(core)-Pt(shell)/C, and Pd(core)-Pt(shell)/C cathode catalysts in polymer electrolyte fuel cells characterized by in situ X-ray absorption fine structure. J Phys Chem C 117(25):13094–13107

    Article  Google Scholar 

  20. Sasaki K, Marinkovic NS, Isaacs HS, Adzic RR (2016) Synchrotron-based in situ characterization of carbon-supported Pt electrocatalysts ACS Catal 6(1): 69–76

    Google Scholar 

  21. Teliska M, O’Grady WE, Ramaker DE (2005) Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L23 X-ray absorption spectroscopy. J Phys Chem B 109(16):8076–8084

    Article  Google Scholar 

  22. Conway BE (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog Surf Sci 49(4):331–452

    Article  Google Scholar 

  23. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park YS (2004) Surface-oxide growth at platinum electrodes in aqueous H2SO4. Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements. Electrochim Acta 49(9–10):1451–1459

    Google Scholar 

  24. Lamy C, Coutanceau C, Leger J-M (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. WILEY-VCH Verlag GmbH & Co. kGaA, Weinheim

    Google Scholar 

  25. Iwasita T, Pastor E (1994) A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39(4):531–543; ibid (1994) D/H exchange of ethanol at platinum electrodes. Electrochim Acta 39(4):547–552

    Article  Google Scholar 

  26. Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578(2):315–321

    Article  Google Scholar 

  27. Wang H, Yusus Z, Behm RJ (2004) Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. J Phys Chem B 108(50):19413–19424

    Article  Google Scholar 

  28. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger JM (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49(22–23):3901–3908

    Article  Google Scholar 

  29. Demirci UB (2007) Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J Power Sources 173(1):11–18

    Article  Google Scholar 

  30. Antolini E (2007) Platinum-based ternary catalysts for low temperature fuel cells: part II. Electrochemical properties. Appl Catal B 74(3–4):337–350

    Article  Google Scholar 

  31. Idriss H (2004) Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platin Met Rev 48(3):105–115

    Article  Google Scholar 

  32. Kowal A, Li M, Shao M, Sasaki M, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325–330

    Article  Google Scholar 

  33. Li M, Kowal A, Sasaki K, Marinkovic NS, Su D, Korach E, Liu P, Adzic RR (2010) Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochim Acta 55(14):4331–4338

    Article  Google Scholar 

  34. Kowal A, Gojkovic SL, Leed KS, Olszewski P, Sung Y-E (2009) Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt–Rh, Pt–SnO2 and Pt–Rh–SnO2 nanoclusters. Electrochem Commun 11(4):724–727

    Article  Google Scholar 

  35. Choi YM, Liu P (2011) Understanding of ethanol decomposition on Rh(1 1 1) from density functional theory and kinetic Monte Carlo simulations. Catal Today 165(1):64–70

    Article  Google Scholar 

  36. Trasatti S (1999) Interfacial Electrochemistry of Conductive Oxides for Electrocatalysis. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, New York, pp 769–788

    Google Scholar 

  37. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2–4):47–154

    Article  Google Scholar 

  38. Faguy PW, Marinkovic NS (1995) Sensitivity and reproducibility in infrared spectroscopic measurements at single-crystal electrode surfaces. Anal Chem 67(17):2791–2799

    Article  Google Scholar 

  39. de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J Phys Chem B 106(38):9825–9830

    Article  Google Scholar 

  40. Li M, Zhou W-P, Marinkovic NS, Sasaki K, Adzic RR (2013) The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2. Electrochim Acta 104(1):454–461

    Article  Google Scholar 

  41. Li M, Cullen D, Sasaki K, Marinkovic NS, More K, Adzic RR (2013) Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making Ir capable of splitting C–C bond. J Am Chem Soc 135(1):132–141

    Article  Google Scholar 

  42. Li M, Marinkovic N, Sasaki K (2012) In situ characterization of ternary Pt–Rh–SnO2/C catalysts for ethanol electrooxidation. Electrocatalysis 3(3–4):376–385

    Article  Google Scholar 

  43. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220–222

    Article  Google Scholar 

  44. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35

    Article  Google Scholar 

  45. Mukerjee S, Srinivasan S, Soriaga M, McBreen JM (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction - XRD, XAS, and electrochemical studies. J Phys Chem 99(13):4577–4589

    Google Scholar 

  46. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497

    Article  Google Scholar 

  47. Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44(14):2132–2135

    Article  Google Scholar 

  48. Frenkel A, Hills CW, Nuzzo RG (2001) A View from the inside: complexity in the atomic scale ordering of supported metal nanoparticles. J Phys Chem B 105(51):12689–12703

    Article  Google Scholar 

  49. Frische HG, Benfield RE (1993) Extract analytical formulae for mean coordination numbers in clusters. Z Phys D Atom Mol Clusters 26(1):S15–S17

    Article  Google Scholar 

  50. Wang JX, Ma C, Choi YM, Su D, Zhu Y, Liu P, Si R, Vukmirovic MB, Zhang Y, Adzic RR (2011) Kirkendall effect and lattice concentration in nanoparticles: a new strategy to enhance sustainable activity. J Am Chem Soc 133(34):13551–13557

    Article  Google Scholar 

  51. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49(46):8602–8607

    Article  Google Scholar 

  52. Sasaki K, Naohara H, Choi YM, Cai Y, Chen W-H, Liu P, Adzic RR (2012) Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat Commun 3. doi:10.1038/ncomms2124

    Google Scholar 

  53. Sasaki K, Kuttiyiel KA, Barrio L, Su D, Frenkel A, Marinkovic N, Mahajan D, Adzic RR (2011) Carbon-supported IrNi core-shell nanoparticles: synthesis, characterization, and catalytic activity. J Phys Chem C 115(20):9894–9902

    Article  Google Scholar 

  54. Kuttiyiel KA, Sasaki K, Choi YM, Su D, Liu P, Adzic RR (2012) Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energ Environ Sci 5(1):5297–5304

    Article  Google Scholar 

  55. Sasaki K, Adzic RR (2009) XAS of platinum monolayer fuel cell electrocatalysts – unambiguous, direct correlation of spectroscopy data with catalytic properties. Synchrotron Radiat News 22(1):17–21

    Article  Google Scholar 

  56. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. CEBELCOR, Oxford

    Google Scholar 

  57. Glasner D, Frenkel AI (2007) Geometrical characteristics of regular polyhedra: application to EXAFS studies of nanoclusters. AIP Conf Proc 882:746–748

    Article  Google Scholar 

  58. Coordinates of polyhedral clusters are available from: http://www3.bnl.gov/frenkel/coords.html. For the program to calculate the properties of bimetallic nanoparticles please contact A. I. Frenkel (anatoly.frenkel@yu.edu).

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Basic Energy Science, Material Science and Engineering Division, Division of Chemical Sciences, Geosciences and Biosciences Division under contract no. DE-AC02-98CH10886, and by the Synchrotron Catalysis Consortium, US Department of Energy under grant no. DE-FG02-05ER15688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Marinkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sasaki, K., Marinkovic, N. (2016). X-Ray Absorption Spectroscopic Characterization of Nanomaterial Catalysts in Electrochemistry and Fuel Cells. In: Kumar, C. (eds) X-ray and Neutron Techniques for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48606-1_6

Download citation

Publish with us

Policies and ethics