Skip to main content

Maximal Material Yield in Gemstone Cutting

  • Chapter
Currents in Industrial Mathematics

Abstract

The fabrication of faceted gems from rough gems, when viewed mathematically, is a problem of maximal material yield. Here, one or more jewels must be embedded within an irregularly shaped rough stone such that the total value of the jewels is maximal. Both the position and the shape of the embedded stones can vary, which distinguishes this problem from the cutting and packing problems known in the literature. On the modeling side, there are three extremely interesting challenges: separating the continuous parameters, significant for yield maximization, from the discrete parameters, describing the facets, finding a mathematically tractable description of the esthetic requirements of the faceted stones, and reformulating the containment and/or non-overlapping conditions into tractable constraints. The methods of general semi-infinite optimization lend themselves to this last-named challenge. The numerical solution of such optimization problems having a practical nature is difficult and, in the mathematical literature, one frequently finds only conceptual solution approaches. Among other things, this chapter describes a novel approach and shows how it can be successfully applied to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Publications on This Topic at the Fraunhofer ITWM

  1. Haase, S., Süss, P., Schwientek, J., Teichert, K., Preusser, T.: Radiofrequency ablation planning: an application of semi-infinite modelling techniques. Eur. J. Oper. Res. 218(3), 856–864 (2012). doi:10.1016/j.ejor.2011.12.014

    Article  Google Scholar 

  2. Küfer, K.H., Stein, O., Winterfeld, A.: Semi-infinite optimization meets industry: a deterministic approach to gemstone cutting. SIAM News 41(8) (2008)

    Google Scholar 

  3. Ludes, T.: Inverse convex approximation of irregular solids by tensor-product splines. Diplomarbeit, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2008)

    Google Scholar 

  4. Maag, V.: A collision detection approach for maximizing the material utilization. Comput. Optim. Appl. 61(3), 761–781 (2015). doi:10.1007/s10589-015-9729-5

    Article  MathSciNet  Google Scholar 

  5. Maag, V., Berger, M., Winterfeld, A., Küfer, K.H.: A novel non-linear approach to minimal area rectangular packing. Ann. Oper. Res. 179, 243–260 (2008). doi:10.1007/s10479-008-0462-7

    Article  Google Scholar 

  6. Malysheva, O.: Optimal approximation of nonlinear gemstone-models by parameterized polyhedra. Diplomarbeit, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2008)

    Google Scholar 

  7. Proll, S.: Matching and alignment methods for three-dimensional objects applied to the volume optimization of gemstones. Diplomarbeit, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2009)

    Google Scholar 

  8. Schwientek, J., Seidel, T., Küfer, K.H.: A transformation-based discretization method for solving general semi-infinite optimization problems. Working paper

    Google Scholar 

  9. Seidel, T.: Konvexitäts- und Konvergenzbetrachtungen am Beispiel des transformationsbasierten Diskretisierungsverfahrens für semi-infinite Optimierungsprobleme. Bachelorarbeit, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2014)

    Google Scholar 

  10. Stein, O., Winterfeld, A.: A feasible method for generalized semi-infinite programming. J. Optim. Theory Appl. 146(2), 419–443 (2010). doi:10.1007/s10957-010-9674-5

    Article  MATH  MathSciNet  Google Scholar 

  11. Winterfeld, A.: Maximizing volumes of lapidaries by use of hierarchical GSIP-models. Diplomarbeit, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2004)

    Google Scholar 

  12. Winterfeld, A.: Application of general semi-infinite programming to lapidary cutting problems. Eur. J. Oper. Res. 191, 838–854 (2008). doi:10.1016/j.ejor.2007.01.057

    Article  MATH  MathSciNet  Google Scholar 

Dissertations on This Topic at the Fraunhofer ITWM

  1. Maag, V.: Multicriteria global optimization for the cooling system design of casting tools. Ph.D. thesis, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2010). Published by Der Andere Verlag, Marburg, ISBN 978-3-89959-956-5

    Google Scholar 

  2. Schwientek, J.: Modellierung und Lösung parametrischer Packungsprobleme mittels semi-infiniter Optimierung–Angewandt auf die Verwertung von Edelsteinen. Ph.D. thesis, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2013). Published by Fraunhofer-Verlag, Stuttgart, ISBN 978-3-8396-0566-0

    Google Scholar 

  3. Teichert, K.: A hyperboxing Pareto approximation method applied to radiofrequency ablation treatment planning. Ph.D. thesis, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2013). Published by Fraunhofer-Verlag, Stuttgart, ISBN 978-3-8396-0783-1

    Google Scholar 

  4. Winterfeld, A.: Large-scale semi-infinite optimization applied to lapidary cutting. Ph.D. thesis, TU Kaiserslautern (in cooperation with Fraunhofer ITWM) (2007). Published by dissertation.de—Verlag im Internet GmbH, Berlin, ISBN 978-3-86624-301-9

    Google Scholar 

Further Literature

  1. Amossen, R.R., Pisinger, D.: Multi-dimensional bin packing problems with guillotine constraints. Comput. Oper. Res. 37(11), 1999–2006 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Belov, G.: Problems, models and algorithms in one- and two-dimensional cutting. Ph.D. thesis, TU Dresden (2004)

    Google Scholar 

  3. Bennell, J.A., Oliveira, J.F.: The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184(2), 397–415 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization, 7th edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  5. Cui, Y., Chen, F., Liu, R., Liu, Y., Yan, X.: A simple algorithm for generating optimal equal circle cutting patterns with minimum sections. Adv. Eng. Softw. 41, 401–403 (2010)

    Article  MATH  Google Scholar 

  6. Cui, Y., Gu, T., Hu, W.: Simplest optimal guillotine cutting patterns for strips of identical circles. J. Comb. Optim. 15, 357–367 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Diehl, M., Houska, B., Stein, O., Steuermann, S.: A lifting method for generalized semi-infinite programs based on lower level Wolfe duality. Comput. Optim. Appl. 54(1), 189–210 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ericson, C.: Real-Time Collision Detection, vol. 14. Elsevier, Amsterdam (2005)

    Google Scholar 

  9. Fischer, K.: Edelsteinbearbeitung, vol. 2, 3th edn. Rühle-Diebener-Verlag, Stuttgart (1996)

    Google Scholar 

  10. Gilmore, P.C., Gomory, R.E.: Multistage cutting-stock problems of two and more dimensions. Oper. Res. 13, 90–120 (1965)

    Article  Google Scholar 

  11. Goerner, S.: Ein Hybridverfahren zur Lösung nichtlinearer semi-infiniter Optimierungsprobleme. Ph.D. thesis, TU Berlin (1997)

    Google Scholar 

  12. Guerra Vázquez, F., Rückmann, J.J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math. 217(2), 394–419 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35, 380–429 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Horst, R., Tuy, H.: The design centering problem. In: Global Optimization—Deterministic Approaches, pp. 572–591. Springer, Berlin (1996). Chap. C 4.1

    Google Scholar 

  15. Lawrence, C.T., Tits, A.L.: Feasible sequential quadratic programming for finely discretized problems from SIP. In: Reemtsen and Rückmann [36], pp. 159–193

    Google Scholar 

  16. Panier, E.R., Tits, A.L.: A globally convergent algorithm with adaptively refined discretization for semi-infinite optimization problems arising in engineering design. IEEE Trans. Autom. Control 34, 903–908 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. de Queiroz, T.A., Miyazawa, F.K., Wakabayashi, Y., Xavier, E.C.: Algorithms for 3D guillotine cutting problems: unbounded knapsack, cutting stock and strip packing. Comput. Oper. Res. 39, 200–212 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Reemtsen, R.: Discretization methods for the solution of semi-infinite programming problems. J. Optim. Theory Appl. 71(1), 85–103 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Reemtsen, R., Goerner, S.: Numerical methods for semi-infinite programming: A survey. In: Reemtsen and Rückmann [36], pp. 195–275

    Google Scholar 

  20. Reemtsen, R., Rückmann, J.J. (eds.): Semi-Infinite Programming. Kluwer Academic, Boston (1998)

    MATH  Google Scholar 

  21. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Scheithauer, G.: Zuschnitt- und Packungsoptimierung: Problemstellungen, Modellierungstechniken, Lösungsmethoden. Vieweg+Teubner, Wiesbaden (2008)

    Google Scholar 

  23. Stein, O.: Bi-Level Strategies in Semi-Infinite Programming. Kluwer, Boston (2003)

    Book  MATH  Google Scholar 

  24. Stein, O.: How to solve a semi-infinite optimization problem. Eur. J. Oper. Res. 223(2), 312–320 (2012)

    Article  MATH  Google Scholar 

  25. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142, 444–462 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42(3), 769–788 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stein, O., Tezel, A.: The semismooth approach for semi-infinite programming under the reduction ansatz. J. Glob. Optim. 41(2), 245–266 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stein, O., Tezel, A.: The semismooth approach for semi-infinite programming without strict complementarity. SIAM J. Optim. 20(2), 1052–1072 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Still, G.: Generalized semi-infinite programming: theory and methods. Eur. J. Oper. Res. 119, 301–313 (1999)

    Article  MATH  Google Scholar 

  30. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Program. 91, 53–69 (2001)

    MATH  MathSciNet  Google Scholar 

  31. Still, G.: Generalized semi-infinite programming: numerical aspects. Optimization 49, 223–242 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Still, G.: Solving generalized semi-infinite programs by reduction to simpler problems. Optimization 53(1), 19–38 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Weber, G.W.: Generalized semi-infinite optimization: on some foundations. J. Comput. Sci. Technol. 4, 41–61 (1999)

    MATH  Google Scholar 

  34. Weber, G.W.: Generalized Semi-Infinite Optimization and Related Topics. Heldermann-Verlag, Lemgo (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Maag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Küfer, KH., Maag, V., Schwientek, J. (2015). Maximal Material Yield in Gemstone Cutting. In: Neunzert, H., Prätzel-Wolters, D. (eds) Currents in Industrial Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48258-2_8

Download citation

Publish with us

Policies and ethics