Skip to main content

Visual Odometry and Mapping for Indoor Environments Using RGB-D Cameras

  • Conference paper
  • First Online:
Robotics (SBR 2014 2014, ROBOCONTROL 2014, LARS 2014)

Abstract

RGB-D cameras (e.g. Microsoft Kinect) offer several sensing capabilities that can be suitable for Computer Vision and Robotics. Low cost, ease of deployment and video rate appearance and depth streams are examples of the most appealing features found on this class of devices. One major application that directly benefits from these sensors is Visual Odometry, a class of algorithms responsible to estimate the position and orientation of a moving agent at the same time that a map representation of the sensed environment is built. Aiming to compute 6DOF camera poses for robots in a fast and efficient way, a Visual Odometry system for RGB-D sensors is designed and proposed that allows real-time position estimation despite the fact that no specialized hardware such as modern GPUs is employed. Through a set of experiments carried out on publicly available benchmark and datasets, we show that the proposed system achieves localization accuracy and computational performance superior to the state-of-the-art RGB-D SLAM algorithm. Results are presented for a thorough evaluation of the algorithm, which involves processing over 6, 5 GB of data corresponding to more than 9000 RGB-D frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools/data/rgbdslam/.

  2. 2.

    https://www.youtube.com/user/brunomfs/videos.

References

  1. Aldoma, A., Marton, Z., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B., Rusu, R., Gedikli, S., Vincze, M.: Tutorial: point cloud library: three-dimensional object recognition and 6 DOF pose estimation. Robot. Autom. Mag. 19(3), 80–91 (2012)

    Article  Google Scholar 

  2. Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intel. 14(2), 239–256 (1992)

    Article  Google Scholar 

  3. Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation, Microprocessor Research Labs (2000)

    Google Scholar 

  4. Calonder, M., Lepetit, V., Fua, P.: Keypoint signatures for fast learning and recognition. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 58–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Davison, A.: Real-time simultaneous localisation and mapping with a single camera. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2003)

    Google Scholar 

  6. Du, H., Henry, P., Ren, X., Cheng, M., Goldman, D., Seitz, S., Fox, D.: Interactive 3D modeling of indoor environments with a consumer depth camera. In: Proceedings of the International Conference on Ubiquitous Computing (UbiComp). ACM, New York (2011)

    Google Scholar 

  7. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MA, USA, May 2012

    Google Scholar 

  8. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  9. Fraundorfer, F., Scaramuzza, D.: Visual odometry: part ii: matching, robustness, optimization, and applications. IEEE Robot. Autom. Mag. 19(2), 78–90 (2012)

    Article  Google Scholar 

  10. Grisetti, G., Stachniss, C., Burgard, W.: Nonlinear constraint network optimization for efficient map learning. IEEE Trans. Intel. Transp. Syst. 10(3), 428–439 (2009)

    Article  Google Scholar 

  11. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  12. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  13. Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2008)

    Google Scholar 

  14. Hu, G., Huang, S., Zhao, L., Alempijevic, A., Dissanayake, G.: A robust RGB-D SLAM algorithm. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1714–1719 (2012)

    Google Scholar 

  15. Intel: Threading Building Blocks (TBB) (2014). https://www.threadingbuildingblocks.org/home. Accessed 1 October 2014

  16. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), May 2013

    Google Scholar 

  17. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2O: a general framework for graph optimization. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613 (2011)

    Google Scholar 

  18. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  19. May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. J. Field Robot. 26(11–12), 934–965 (2009)

    Article  Google Scholar 

  20. Microsoft: Microsoft Kinect (2014). http://www.xbox.com/en-US/kinect. Accessed 1 October 2014

  21. Newman, P., Cole, D., Ho, K.: Outdoor SLAM using visual appearance and laser ranging. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 1180–1187 (2006)

    Google Scholar 

  22. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–659 (2004)

    Google Scholar 

  23. Open Perception: Point Cloud Library (PCL) (2014). http://pointclouds.org. Accessed 1 October 2014

  24. OpenCV Foundation: OpenCV Library (2014). http://opencv.org. Accessed 1 October 2014

  25. Osteen, P., Owens, J., Kessens, C.: Online egomotion estimation of RGB-D sensors using spherical harmonics. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 1679–1684 (2012)

    Google Scholar 

  26. Paton, M., Kosecka, J.: Adaptive RGB-D localization. In: Conference on Computer and Robot Vision (CRV), pp. 24–31 (2012)

    Google Scholar 

  27. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  29. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593–600 (1994)

    Google Scholar 

  30. Steinbruecker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images. In: Workshop on Live Dense Reconstruction with Moving Cameras at the International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  31. Stückler, J., Behnke, S.: Integrating depth and color cues for dense multi-resolution scene mapping using RGB-D cameras. In: Proceedings of IEEE International Conference on Multisensor Fusion and Information Integration (MFI), September 2012

    Google Scholar 

  32. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robot Systems (IROS), October 2012

    Google Scholar 

  33. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  34. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intel. 13(4), 376–380 (1991)

    Article  Google Scholar 

  35. Whelan, T., Johannsson, H., Kaess, M., Leonard, J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 2013

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Funding Agency for Studies and Projects (FINEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno M. F. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, B.M.F., Gonçalves, L.M.G. (2015). Visual Odometry and Mapping for Indoor Environments Using RGB-D Cameras. In: Osório, F., Wolf, D., Castelo Branco, K., Grassi Jr., V., Becker, M., Romero, R. (eds) Robotics. SBR 2014 ROBOCONTROL LARS 2014 2014 2014. Communications in Computer and Information Science, vol 507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48134-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48134-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48133-2

  • Online ISBN: 978-3-662-48134-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics