Skip to main content

Emergence on Decreasing Sandpile Models

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

  • 649 Accesses

Abstract

Sand is a proper instance for the study of natural algorithmic phenomena. Idealized square/cubic sand grains moving according to “simple” local toppling rules may exhibit surprisingly “complex” global behaviors. In this paper we explore the language made by words corresponding to fixed points reached by iterating a toppling rule starting from a finite stack of sand grains in one dimension. Using arguments from linear algebra, we give a constructive proof that for all decreasing sandpile rules the language of fixed points is accepted by a finite (Muller) automaton. The analysis is completed with a combinatorial study of cases where the emergence of precise regular patterns is formally proven. It extends earlier works presented in [1517], and asks how far can we understand and explain emergence following this track?

This work was partially supported by IXXI (Complex System Institute, Lyon), ANR projects Dynamite and QuasiCool (ANR-12-JS02-011-01), Modmad Federation of U. St-Etienne, FONDECYT Grant 3140527 (DIM, Universidad de Chile), and Núcleo Milenio Información y Coordinación en Redes (ACGO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    stands for \(i \le c\,f(N)\) for a suitable constant c.

References

  1. Baader, F., Nipkow, T.: Term Rewriting and all that. University Press, Cambridge (1998)

    Google Scholar 

  2. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Revi. Letter 59, 381–384 (1987)

    Article  MathSciNet  Google Scholar 

  3. Chazelle, B.: Natural algorithms. In: SODA, pp. 422–431 (2009)

    Google Scholar 

  4. Dhar, D.: Theoretical studies of self-organized criticality. Phys. Stat. Theor. Phys. 369(1), 29–70 (2006)

    Article  MathSciNet  Google Scholar 

  5. Durand-Lose, J.O.: Parallel transient time of one-dimensional sand pile. Theor. Comput. Sci. 205(1–2), 183–193 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Formenti, E., Masson, B.: On computing fixed points for generalized sand piles. Int. J. Unconventional Comput. 2(1), 13–25 (2005)

    Google Scholar 

  7. Formenti, E., Van Pham, T., Phan, H.D., Tran, T.H.: Fixed point forms of the parallel symmetric sandpile model. Theor. Comput. Sci. 533, 1–14 (2014)

    Article  MATH  Google Scholar 

  8. Gardner, R.B., Govil, N.K.: Some generalizations of the eneström-kakeya theorem. Acta Math. Hung. 74(1–2), 125–134 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goles, E., Kiwi, M.: One-dimensional sandpiles, cellular automata and related models, pp. 169–185. Nonlinear Phenomena in Fluids, Solids and Other Complex Systems (1991)

    Google Scholar 

  10. Goles, E., Kiwi, M.: Games on line graphs and sand piles. Theor. Comput. Sci. 115(2), 321–349 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goles, E., Latapy, M., Magnien, C., Morvan, M., Phan, H.D.: Sandpile models and lattices: a comprehensive survey. Theor. Comput. Sci. 322(2), 383–407 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goles, E., Morvan, M., Phan, H.D.: The structure of a linear chip firing game and related models. Theor. Comput. Sci. 270(1–2), 827–841 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. University Press, Cambridge (1996)

    Google Scholar 

  14. Muller, D.E.: Infinite sequences and finite machines. In: SWCT, pp. 3–16 (1963)

    Google Scholar 

  15. Perrot, K., Rémila, E.: Kadanoff sand pile model. Avalanche structure and wave shape. Theor. Comput. Sci. 504, 52–72 (2013)

    Article  MATH  Google Scholar 

  16. Perrot, K., Rémila, É.: Emergence of wave patterns on kadanoff sandpiles. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 634–647. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Perrot, K., Rémila, E.: Strong emergence of wave patterns on kadanoff sandpiles. submitted to a journal (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kévin Perrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perrot, K., Rémila, É. (2015). Emergence on Decreasing Sandpile Models. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics